
TempAMLSI : Temporal Action Model Learning based on Grammar Induction

Maxence Grand, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes, LIG

Saint Martin d’Hères, France
{Maxence.Grand, Damien.Pellier, Humbert.Fiorino}@univ-grenoble-alpes.fr}

Abstract

Hand-encoding PDDL domains is generally accepted as dif-
ficult, tedious and error-prone. The difficulty is even greater
when temporal domains have to be encoded. Indeed, actions
have a duration and their effects are not instantaneous. In
this paper, we present TempAMLSI, an algorithm based on
the AMLSI approach able to learn temporal domains. Tem-
pAMLSI is based on the classical assumption done in tem-
poral planning that it is possible to convert a non-temporal
domain into a temporal domain. TempAMLSI is the first ap-
proach able to learn temporal domain with single hard enve-
lope and Cushing’s intervals. We show experimentally that
TempAMLSI is able to learn accurate temporal domains, i.e.,
temporal domain that can be used directly to solve new plan-
ning problem, with different forms of action concurrency.

1 Introduction
Thanks to description languages like PDDL (McDermott
et al. 1998), AI planning has become more and more im-
portant in many application fields. One reason is the versa-
tility of PDDL to represent durative actions (Fox and Long
2003), i.e. actions that have a duration, and whose precon-
ditions and effects must be satisfied and applied at different
times.

Temporal PDDL domains have different levels of required
action concurrency (Cushing et al. 2007). Some of them
are sequential, which means that all the plan parts contain-
ing overlapping durative actions can be rescheduled into a
completely sequential succession of durative actions: each
durative action starts after the previous durative action is
terminated. One important property of sequential temporal
domains is that they can be rewritten as classical domains,
and therefore used by classical non-temporal planners. Some
temporal domains require different forms of action concur-
rence such as Single Hard Envelope (SHE) (Coles et al.
2009). SHE is a form of action concurrency where a durative
action can be executed only if another durative action called
the envelope, is executed simultaneously. This is due to the
fact that the enveloped durative action needs a resource, dur-
ing all its execution, added at the start of the execution of
the envelope and deleted at the end of the execution of the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

envelope. One important property of SHE temporal domains
is that they cannot be sequentially rescheduled.

Hand-encoding PDDL domains is generally considered
difficult, tedious and error-prone by experts, and this is even
more harder with action concurrency. It is therefore essential
to develop tools allowing to acquire temporal domains.

To facilitate PDDL domain acquisition, different ma-
chine learning algorithms have been proposed. First, for
classical domains as for instance, ARMS (Yang, Wu, and
Jiang 2007), SLAF (Shahaf and Amir 2006), Louga (Kucera
and Barták 2018), LSONIO (Mourão et al. 2012), LOCM
(Cresswell, McCluskey, and West 2009), IRale (Rodrigues,
Gérard, and Rouveirol 2010), PlanMilner (Segura-Muros,
Pérez, and Fernández-Olivares 2018). In these approaches,
training data are either (possibly noisy and partial) interme-
diate states and plans previously generated by a planner, or
randomly generated action sequences. These learning tech-
niques are promising, but they cannot be used to learn tem-
poral domains. (Garrido and Jiménez 2020) have proposed
an algorithm to learn temporal domains using CSP tech-
niques, however their approach is limited to sequential tem-
poral domains. To our best knowledge, there is no learning
approach for both SHE and sequential temporal domains.

Several temporal planners (Fox and Long 2002; Halsey,
Long, and Fox 2004; Celorrio, Jonsson, and Palacios 2015;
Furelos Blanco et al. 2018) attempt to exploit classical plan-
ning techniques for temporal planning. These planners con-
vert a temporal domain into a classical domain, i.e. a domain
containing non-durative action, generate a plan using this
classical domain, and use rescheduling techniques to make
the plan compatible with durative actions. Our contribution
is to propose an approach exploiting the conversion of tem-
poral domains into classical domains, initially proposed to
solve temporal planning problems, for the temporal domain
learning task. More precisely, in this work we assume that
is possible to reduce the temporal domain learning task into
the classical domain learning task.

In this paper, we present TempAMLSI, a learning al-
gorithm for temporal domains including different levels
of required action concurrency. TempAMLSI is built on
AMLSI (Grand, Fiorino, and Pellier 2020a), a PDDL do-
main learner based on grammar induction. Like AMLSI,
TempAMLSI takes as input feasible and infeasible action
sequences to frame what is allowed by the targeted do-

main. More precisely, TempAMLSI consists of three steps:
(1) TempAMLSI converts temporal sequences into non-
temporal sequences, (2) TempAMLSI learns a classical do-
main containing non-durative action using AMLSI, and (3)
converts it into a temporal domain containing durative ac-
tions.

The rest of the paper is organized as follows. In section 2
we present a problem statement. In section 3 we give some
backgrounds on AMLSI approach and, in section 4, we de-
tail TempAMLSI steps. Finally, section 5 evaluates the per-
formance of TempAMLSI on IPC temporal benchmarks.

2 Problem Statement
This section introduces a formalization of planning domain
learning which consisting in learning a transition function of
a grounded planning domain, and in expressing it as PDDL
operators.

In classical planning, world states s are modeled as sets
of logical propositions, and actions change the world states.
Formally, let S be the set of all the propositions modeling
properties of world, and A the set of all the possible actions
in this world. A state s is a subset of S and each action
a ∈ A is a triple of proposition sets (ρa, ε

+
a , ε
−
a), where

ρa, ε
+
a , ε
−
a ⊆ S, and ε+a ∩ ε−a = ∅. ρa are the preconditions

of action a, that is, the propositions that must be in the state
before the execution of action a. ε+a and ε−a are respectively
the positive (add list) and the negative (del list) effects of
action a, that is, the propositions that must be added or
deleted in s after the execution of the action a. Therefore,
learning a classical planning domain consists in learning
the deterministic state transition function γ : S × A → S
defined as: γ(s, a) = (s ∪ ε+a) \ ε−a where γ(s, a) exists if a
is applicable in s, i.e., if and only if ρa ⊆ s.

In temporal planning (Fox and Long 2003), states are de-
fined as in classical planning. However, the action set A is a
set of durative actions. A durative action a is composed of:
• da; the duration
• ρa(s), ρa(e), ρa(o): preconditions of a at start, over all,

and at end, respectively.
• ε+a (s), ε+a (e): positive effects of a at start and at end, re-

spectively.
• ε−a (s), ε−a (e): negative effects of a at start and at end, re-

spectively.
The semantics of durative actions is defined in terms of

two discrete events starta and enda, each of which is natu-
rally expressed as a classical action. Starting a durative ac-
tion a in state s is equivalent to applying the classical action
starta in s, first verifying that ρstarta holds in s. Ending a
in state s′ is equivalent to applying enda in s′, first by veri-
fying that ρenda holds in s′. starta and enda are defined as
follows:

starta : ρa(s) = ρstarta ε+a (s) = ε+starta ε−a (s) = ε−starta
enda : ρa(e) = ρenda ε+a (e) = ε+enda ε−a (e) = ε−enda

This process is restricted by the duration of a, denoted
da and the over all precondition. Event enda has to occur

exactly da time units after starta and the over all precondi-
tion has to hold in all states between starta and enda. Al-
though a has a duration, its effects apply instantaneously at
the start and end of a, respectively. The preconditions ρa(s)
and ρa(e) are also checked instantaneously, but ρa(o) has to
hold for the entire duration of a. The structure of a durative
action is summarized in the Figure 1.

A temporal action sequence is a set of action-time
pairs π = {(a1, t1), . . . , (an, tn)}. Each action-time pair
(a, t) ∈ π is composed of a durative action a ∈ A and
a scheduled start time t of a, and induces two events
starta and enda with associated timestamps t and t + da,
respectively. Events starta (resp. enda) is applied in
the state st (resp. st+da), st (resp. st+da) being a state
time-stamped with t (resp. t + da). Then, the tempo-
ral transition function γ to learn can be rewritten as:
γ(s, a, t) = (γ(st, starta), γ(st+da , enda)). The transition
function γ(s, a, t) is defined if and only if: ρa(s) ∈ st,
ρa(e) ∈ st+da and ∀t′ such that t ≤ t′ ≤ t+da ρa(o) ∈ st′ .

To learn the state transition function γ and to express it as
a PDDL temporal domain, we assume that:
• we are able to observe temporal sequences of state/action

defined recursively as follows:

Γ(s, π) =


[s] if π = ∅
[s] if γ(s, a0, t0) undef
[s] + Γ(γ(s, a0, t0), [(a1, t1), .., (an, tn)]) otherwise

where observed states s can be possibly partial. A partial
state is a state where some propositions are missing.

• for all action a = (ηa, da, ρa(s), ρa(e), ρa(o), ε+a (s),
ε+a (e), ε−a (s), ε−a (e)) in the sequences of state/action, ηa,
the name of a is known, da is a known constant, and
ρa(s), ρa(e), ρa(o), ε+a (s), ε+a (e), ε−a (s), and ε−a (e) are
unknown.

• learnt temporal domains can required different forms of
action concurrency (see Figure - 2) such as Single Hard
Envelope (SHE) (Coles et al. 2009). SHE is a form of ac-
tion concurrency where the execution of a durative action
a is required for the execution of a second durative ac-
tion a′. Formally, a SHE is a durative action a′ that adds
a proposition p at start and deletes it at end while p is
an over all precondition of a durative action a. Contrary
to sequential temporal domains, for temporal domains
containing SHE there exists temporal action sequences
that cannot be sequentially rescheduled. For instance, the
Match domain and the the following actions:
– MEND(f m) such that (light m) ∈ ρMEND(f m)(o)

– LIGHT (m) such that (light m) ∈ ε+LIGHT (m)(s) and
(light m) ∈ ε−LIGHT (m)(e)

The durative action MEND(f m) cannot start be-
fore the start of the durative action LIGHT (m) and
MEND(f m) cannot end after the end of LIGHT (m),
so MEND(f m) have to start after the start of
LIGHT (m) and MEND(f m) have to end before the
end of LIGHT (m), it is therefore impossible to sequen-
tially reschedule any temporal action sequences contain-
ing these actions. Finally, note that there is other forms

ρa(s)

ε+a (s)
ε−a (s)

ρa(o) ρa(e)

ε+a (e)
ε−a (e)

da

Figure 1: Structure of a durative action a

Sequential
Domains

SHE
Domains

All Cushing’s form of
required action concurrency

Figure 2: Different form of required action concurrency

of required action concurrency than SHE (Cushing et al.
2007).

3 Background on AMLSI
AMLSI takes as inputs I+ and I− training datasets, and out-
puts a PDDL domain. The AMLSI algorithm consists of 3
steps: (1) AMLSI learns an Deterministic Finite Automa-
ton (DFA) corresponding to the regular grammar generating
the action sequences in I+ and forbidding those in I−; (2)
AMLSI induces the PDDL operators from the learnt DFA;
(3) finally, AMLSI refines these operators to deal with noisy
and partial state observations.

The first step consisting in learning the DFA is carried
out by using a variant of the classic algorithm for learning
regular grammar called RPNI (Oncina and Garcı́a 1992).
The RPNI algorithm used by AMLSI is specially tuned to
deal with planning features and encode the links between
preconditions and effects of actions to speedup the learning
process (see (Grand, Fiorino, and Pellier 2020b) for a com-
plete description). Formally, the learnt DFA is a quintuple
(A,N, n0, γ, F), where A is the set of actions, N is the set
of nodes, n0 ∈ N is the initial node, γ is the node transition
function, and F ⊆ N is the set of final nodes.

The second step consists in generating the PDDL oper-

n n′ ...a a′

µA(n, a) µP (n
′, a)

Figure 3: Mapping overview

ators of the planning domain to learn. To carry out this
step, AMLSI must first know which node of the DFA cor-
responds to which observed state. Thus, AMLSI maps the
pairs ”node, action” in the DFA with the pairs ”state, action”
of all π ∈ I+ (see Figure 3) and labels the propositions of
the node that represents the preconditions and the effects of
the action transition in the DFA. Therefore, there are two
different labels for a node: the (A)nte label µA and (P)ost
label µP . µA(n, a) (resp. µP (n, a)) gives the intersection of
state set before (resp. after) the execution of the transition
a in node n: a is an outcoming (resp. incoming) edge of n
in the DFA. Once the labels computed, AMLSI induces the
preconditions and effects the planning operators. The pre-
conditions of an operator o are the set intersection of all the
labels µA(n, a) such that a is an instance of o and a is an
outgoing transitions of the node n. Formally, p ∈ ρo if and
only if for all a instance of o,

p ∈ µA(n, a) (1)

Then, the negative effects ε−o of an operator o are computed
as the set intersection of the propositions present before the
execution of all the actions a instances of o, and never after.
Formally, p ∈ ε−o if and only if for all a instance of o:

p ∈ µA(n, a) ∧ p 6∈ µP (n, a) (2)

Finally, the positive effects ε+o of an operator o are computed
similarly: p ∈ ε+o if and only if for all a instance of o:

p 6∈ µA(n, a) ∧ p ∈ µP (n, a) (3)

Finally, the last step consists in refining the PDDL opera-
tors induced at step 2 to deal with noisy and partial state ob-
servations. First of all, AMLSI starts by refining the operator
effects to ensure that the generated operators allow to regen-
erate the induced DFA. To that end, AMLSI adds all effects
allowing to ensure that each transition in the automaton are
feasible. Then, AMLSI refines the preconditions of the oper-
ators. AMLSI makes the following assumptions as in (Yang,
Wu, and Jiang 2007): The negative effects of an operator
must be used in its preconditions. Thus, for each negative
effect of an operator, AMLSI adds the corresponding propo-
sition in the preconditions. Since effect refinements depend
on preconditions and precondition refinements depend on ef-
fects, AMLSI repeats these two refinements steps until con-
vergence, i.e., no more precondition or effect is added. Fi-
nally, AMLSI performs a Tabu Search to improve the PDDL
operators independently of the induced DFA, on which op-
erator generation is based. Once the Tabu Search reaches a
local optimum, AMLSI repeats all the three refinement steps
until convergence.

4 Temporal AMLSI
The TempAMLSI approach is summarized by the Fig-

ure - 4. After having built the samples containing tempo-
ral sequences (including both feasible and infeasible se-
quences), TempAMLSI converts the temporal samples into
non-temporal sequences (see Section - 4.1). We use the
AMLSI algorithm to learn an intermediate classical PDDL
domain, and then convert it into a temporal PDDL domain

AMLSI
Sample

Conversion
Domain

Conversion

Temporal training
data sets IT+ and IT−

Temporal
PDDL Domain

Classical
training data sets

I+ and I−
Intermediate

PDDL Domain

Figure 4: Overview of the TempAMLSI approach

(: a c t i o n MEND−START
:parameters (? f − f u s e ?m − match)
: p r e c o n d i t i o n (and (h a n d f r e e)

(l i g h t ?ma))
: e f f e c t (and (not (h a n d f r e e))))

(: a c t i o n MEND−END
:parameters (? f − f ?m − m)
: p r e c o n d i t i o n (and (l i g h t ?m))
: e f f e c t (and (mended ? f) (h a n d f r e e)))

(a) Classical declaration of the operator MEND - 2 Operators

(: a c t i o n MEND−START
:parameters (? f − f u s e ?m − match)
: p r e c o n d i t i o n (and (h a n d f r e e))
: e f f e c t (and (not (h a n d f r e e))))

(: a c t i o n MEND−INV
:parameters (? f − f ?m − m)
: p r e c o n d i t i o n (and (l i g h t ?m))
: e f f e c t ())

(: a c t i o n MEND−END
:parameters (? f − f ?m − m)
: p r e c o n d i t i o n ()
: e f f e c t (and (mended ? f) (h a n d f r e e)))

(b) Classical declaration of the operator MEND - 3 Operators

(: d u r a t i v e − a c t i o n MEND
:parameters (? f − f u s e ?m − match)
: d u r a t i o n (= ? d u r a t i o n 2)
: c o n d i t i o n (and (a t s t a r t (h a n d f r e e))

(ove r a l l (l i g h t ?m)))
: e f f e c t (and

(a t s t a r t (not (h a n d f r e e)))
(a t end (mended ? f))
(a t end (h a n d f r e e))
))

(c) Durative declaration of the operator MEND

Figure 5: Comparison between the durative declaration and
the classical declaration of the operator MEND of the Match
domain.

(see Section - 4.2). In the rest of this section we focus on the
sample and domain conversion steps and present two vari-
ants for both steps:
• 2 Operators : Actions are converted into two event ac-

tions.
• 3 Operators : Actions are converted into three event ac-

tions.

4.1 Sample conversion
2 Operators Let us take a sample containing πT , πT being
a positive temporal sequence such that:

πT = {(0, LIGHT (m)), (0.5,MEND(f1,m)), (2.6,MEND(f2,m))}

We can convert each durative action in the following way:
Each durative action a is converted into two event actions
start(a) and end(a). After conversion, we have the follow-
ing sample:

π = {start(LIGHT (m)), start(MEND(f1,m)), end(MEND(f1,m)),
start(MEND(f2,m)), end(MEND(f2,m)), end(LIGHT (m))}

Negative temporal sequences are converted in the same way.

3 Operators Let us take a sample containing πT , πT being
a positive temporal sequence such that:

πT = {(0, LIGHT (m)), (0.5,MEND(f1,m)), (2.6,MEND(f2,m))}

We can convert each durative action in the following way:
Each durative action a is converted into three event actions
start(a) inv(a) and end(a). After conversion, we have the
following sample:

π = {start(LIGHT (m)), inv(LIGHT (m)), start(MEND(f1,m)),
inv(LIGHT (m)), inv(MEND(f1,m)), end(MEND(f1,m)),
inv(LIGHT (m)), start(MEND(f2,m)), inv(LIGHT (m)),
inv(LIGHT (m)), inv(MEND(f1,m)), end(MEND(f2,m)),
end(LIGHT (m))}

Negative temporal sequences are converted in the same way.

4.2 Domain conversion
After having learnt the classical PDDL domain with
AMLSI, TempAMLSI converts PDDL operators into tem-
poral operators. The Figure - 5 gives an example of conver-
sion for the MEND operator of the Match domain for the 2
Operators and the 3 Operators variants.

2 Operators The domain conversion is done in the follow-
ing way:

ρa(s) = ρstart(a) \ ρend(a), ε+a (s) = ε+start(a), ε
−
a (s) = ε−start(a)

ρa(e) = ρend(a) \ ρstart(a), ε+e (s) = ε+end(a), ε
−
e (s) = ε−end(a)

ρa(o) = ρstart(a) ∩ ρend(a)

First of all, At start (resp. at end) effects are the effects
of start (resp. end) classical operators. Then, Overall pre-
conditions are the intersection of preconditions of start and
end classical operators. Finally, At start (resp. at end) pre-
conditions are preconditions of the start (resp. end) classical
operator excluding end (resp. start) preconditions.

Domain # Operators # Predicates Class
Peg Solitaire 1 3 Sequential

Sokoban 2 3 Sequential
Zenotravel 5 4 Sequential

Turn and Open 5 8 SHE
Match 2 4 SHE

Table 1: Benchmark domain characteristics

3 Operators The domain conversion is done in the follow-
ing way:

ρa(s) = ρstart(a) ε
+
a (s) = ε+start(a), ε

−
a (s) = ε−start(a)

ρa(e) = ρend(a), ε
+
e (s) = ε+end(a), ε

−
e (s) = ε−end(a)

ρa(o) = ρinv(a)

First of all, At start (resp. at end) effects are the effects of
start (resp. end) classical operators. Then, Overall precondi-
tions are the preconditions of inv classical operators. Finally,
At start (resp. at end) preconditions are preconditions of start
(resp. end) classical operators.

5 Experiments and evaluations
5.1 Experimental setup
Our experiments are based on 5 temporal domains (see Ta-
ble - 1). More precisely we test TempAMLSI with three Se-
quential domains (Peg Solitaire, Sokoban, Zenotravel), and
two SHE domains (Match, Turn and Open)1.

We deliberately choose the size of the test sets larger than
the training sets to show TempAMLSI ability to learn accu-
rate domains with small datasets. The training and test sets
are generated as follows: at a given state s, we randomly
choose a durative action a in A. If a is feasible, the cur-
rent state is observed, and we add a to the current π. This
random walk is iterated until π reaches an arbitrary length
(randomly chosen between 5 and 15), and added to I+. If a
is infeasible in the current state, the concatenation of π and
a is added to I−. In the test sets E+ and E−, we generate
action sequences with a length randomly chosen between 1
and 30.

We test each domains with three different initial states
over five runs, and we use five seeds randomly generated
for each run. All tests were performed on an Ubuntu 14.04
server with a multi-core Intel Xeon CPU E5-2630 clocked
at 2.30 GHz with 16GB of memory.

5.2 Evaluation Metrics
We evaluate TempAMLSI with four different metrics. The
first metric, the syntactical error, is the most used metric in
the literature. The other metrics, the FScore and the accuracy
are more specific to our approach.

• Syntactical Error : The syntactical error error(a) for
an action a is defined as the number of extra or missing
predicates in the preconditions ρa(s, e, o), the positive
effects ε+a (s, e) and the negative effects ε−a (s, e) divided

1Our experimental setup is available at: https://gitlab.com/
AMLSI/temporal amlsi

by the total number of possible predicates (Zhuo et al.
2010). The syntactical error for a domain with a set of
actions A is: Eσ = 1

|A|
∑
a∈A error(a).

• FScore: This metric is initially used for pattern recogni-
tion and binary classification (Rijsbergen 1979). Never-
theless, it can be used to evaluate the quality of a learnt
grammar. Indeed, a grammar is equivalent to a binary
classification system labeled with {1, 0}. For grammars
we can assume that the sequences belonging to the gram-
mar are data labeled with 1, and non-grammar sequences
are data labeled with 0. This metric is therefore able to
test to what extent the learnt domain D can regener-
ate the grammar. A domain D can regenerate a gram-
mar if D accept, i.e. can generate, all positive test se-
quences e ∈ E+ and reject, i.e. cannot generate, test neg-
ative sequences e ∈ E−. Formally, the FScore is com-
puted as follows: FScore = 2.P.R

P+R where R is the recall,
i.e. the rate of sequences e accepted by the ground truth
domain that are successfully accepted by the learnt do-
main, computed as follows: R = |{e∈E+ | accept(D,e)}|

|E|
and P is the precision, i.e. the rate of sequences e ac-
cepted by the learnt domain that are sequences accepted
by the ground truth domain, computed as follow: P =

|{e∈E+ | accept(D,e)}|
|{e∈E+ | accept(D,e)}∪{e∈E− | accept(D,e)}| .

• Accuracy: It quantifies to what extent learnt domains are
able to solve new planning problems (Zhuo, Nguyen, and
Kambhampati 2013). Most of the works addressing the
problem of learning planning domains uses the syntac-
tical error to quantify the performance of the learning
algorithm. However, domains are learnt to be used for
planning, and it often happens that one missing precondi-
tion or effect, which amounts to a small syntactical error,
makes them unable to solve planning problems. Formally,
the accuracy Acc = N

N∗ is the ratio between N , the num-
ber of correctly solved problems with the learnt domain,
and N∗, the total number of problems to solve. The accu-
racy is computed over 20 problems. We also report in our
results the ratio of (possibly incorrectly) solved problems.
In the experiments, we solve the test problems with dif-
ferent planners. Instances of Sequential domains and SHE
domains are solved with the TP-SHE (Celorrio, Jonsson,
and Palacios 2015) planner and instances of the Cush-
ing domain are solved with the Tempo planner (Celor-
rio, Jonsson, and Palacios 2015). We use different plan-
ners because some planners have good results with only
some forms of action concurrency. For instance, TP-SHE
is the domain with the best performances for instances
with Single Hard Envelope but has bad results for Cush-
ing. Plan validation is realized with the automatic valida-
tion tool used in the IPC competition VAL (Howey and
Long 2003).

5.3 Results
In order to study the performance of TempAMLSI with re-
spect to noisy and partial state observations, we use six dif-
ferent experimental scenarios:

Domain Observability Noise Algorithm Eσ(%) FScore (%) Solved Acc(%)

Peg

100%

0%
2 Operators 0.9% 100% 100% 100%
3 Operators 0.9% 100% 100% 100%

1%
2 Operators 0.9% 100% 100% 100%
3 Operators 0.9% 100% 100% 100%

10%
2 Operators 0.9% 100% 100% 100%
3 Operators 1.1% 97.6% 93.3% 93.3%

25%

0%
2 Operators 2.2% 100% 100% 100%
3 Operators 1.4% 100% 100% 100%

1%
2 Operators 2.2% 100% 100% 100%
3 Operators 1.8% 94.9% 86.7% 86.7%

10%
2 Operators 2.6% 80.3% 66.7% 86.7%
3 Operators 1.8% 85.6% 73.3% 73.3%

Zenotravel

100%

0%
2 Operators 2.4% 100% 100% 100%
3 Operators 2.4% 100% 100% 100%

1%
2 Operators 2.8% 91.3% 97.7% 86.7
3 Operators 2.7% 88.7% 99.3% 92%

10%
2 Operators 3% 83.3% 92% 92%
3 Operators 3.7% 56.8% 68.3% 40%

25%

0%
2 Operators 2.4% 100% 89.7% 74.7%
3 Operators 2.7% 100% 93% 88%

1%
2 Operators 3.5% 71.6% 61% 52.3%
3 Operators 3.3% 62.7% 66.7% 44.7%

10%
2 Operators 6.3% 32.4% 58.3% 30%
3 Operators 5.6% 40.1% 64.3% 27.7%

Sokoban

100%

0%
2 Operators 0% 100% 100% 100%
3 Operators 0% 100% 100% 100%

1%
2 Operators 0% 100% 100% 100%
3 Operators 0.3% 93.6% 100% 93.3%

10%
2 Operators 0.1% 95.1% 100% 100%
3 Operators 0.4% 88.9% 100% 86.7%

25%

0%
2 Operators 0.9% 100% 100% 40%
3 Operators 0.7% 100% 100% 46.7%

1%
2 Operators 1.9% 88.3% 86.7% 33.3%
3 Operators 1.3% 86.7% 86.7% 33.3%

10%
2 Operators 2% 72.3% 93.3% 46.7%
3 Operators 1.8% 62.8% 89% 29%

Table 2: Domain learning results on 3 sequential temporal domains when observations are complete. TempAMLSI performance
is measured in terms of, syntactical error Eσ , FScore and accuracy Acc.

1. Complete intermediate observations (100%) and no noise
(0%).

2. Complete intermediate observations (100%) and low level
of noise (1%).

3. Complete intermediate observations (100%) and high
level of noise (10%).

4. Partial intermediate observations (25%) and no noise
(0%).

5. Partial intermediate observations (25%) and low level of
noise (1%).

6. Partial intermediate observations (25%) and high level of
noise (10%).

Also, we test two different variants of TempAMLSI : (1) 2
Operators and (2) 3 Operators (see Section - 4).

Sequential Temporal Domains Table - 2 gives results for
Sequential Temporal Domains.

First of all for the the Peg Solitaire domain, we observe
that for the first experimental scenario (Complete observa-
tion and no noise), both variants learn optimal domains. In-
deed, FScore and accuracy are optimal. However, we can
observe that the syntactical distance is not optimal for both
variants (Eσ = 0.9%), this is due to the fact that some at
start and at end effect preconditions are encoded as over-
all preconditions and vice versa. For the second experi-
mental scenario (Complete observations and low level of
noise) none of the metrics are degraded for both variants. For
the third experimental scenario (Complete observations and
high level of noise) the 2 Operators variant learns optimal
domains. All metrics are degraded for the 3 Operators vari-
ant, however learnt domains stay accurate (Acc = 93.3%).
For the fourth experimental scenario (Partial observations

Domain Observability Noise Algorithm Eσ(%) FScore (%) Solved Acc(%)

Match

100%

0%
2 Operators 3.7% 93.5% 100% 100%
3 Operators 3.5% 93.9% 100% 100%

1%
2 Operators 4.1% 92.8% 100% 100%
3 Operators 4.8% 84.3% 86.7% 86.7%

10%
2 Operators 4.3% 94.6% 86.7% 86.7%
3 Operators 4.8% 59.5% 86.7% 86.7%

25%

0%
2 Operators 3.8% 89.9% 93.3% 93.3%
3 Operators 5.5% 60.3% 60% 60%

1%
2 Operators 5.4% 80.1% 66.7% 66.7%
3 Operators 6.7% 51% 60% 60%

10%
2 Operators 6.5% 71.9% 73.3% 66.7%
3 Operators 8.7% 40.6% 53.3% 53.3

Turn and Open

100%

0%
2 Operators 1.2% 100% 100% 100%
3 Operators 1.3% 100% 100% 100%

1%
2 Operators 1.3% 100% 100% 100%
3 Operators 1.6% 92.9% 100% 93.3%

10%
2 Operators 3.5% 54.1% 57% 13.3%
3 Operators 4.8% 35% 60% 13.3%

25%

0%
2 Operators 3.2% 100% 77% 50%
3 Operators 2.2% 100% 97% 69.3%

1%
2 Operators 4.1% 86.2% 62.7% 33.3%
3 Operators 2.8% 85.6% 97% 61.7%

10%
2 Operators 7% 41.9% 63% 20.7%
3 Operators 6.5% 37.9% 68.3% 19.3%

Table 3: Domain learning results on 3 SHE temporal domains when observations are complete. TempAMLSI performance is
measured in terms of, syntactical error Eσ , FScore and accuracy Acc.

and no noise) only the syntactical distance is degraded, FS-
core and Accuracy are always optimal. For the fifth exper-
imental scenario (Complete observations and low level of
noise) only the syntactical distance is degraded for the 2
Operators variant. All metrics are degraded for the 3 Oper-
ators variant, however learnt domains stay accurate (Acc =
86.7%). For the last experimental scenario (Complete ob-
servations and high level of noise) all metrics are degraded
for both variants. We can observe that for the majority of
metrics the 3 Operators variant gives better results than the
2 Operators variant. However the 2 Operators variant gives
better accuracy (Acc = 86.7%) for the 2 Operators variant
and Acc = 73.3% for the 3 Operators variant).

Then for the the Zenotravel domain, we observe that for
the first experimental scenario, both variants learn optimal
domains. For the second experimental scenario all metrics
are degraded for both variants. We can observe that for the
majority of metrics the 3 Operators variant gives better re-
sults than the 2 Operators variant. For the third experimen-
tal scenario all metrics are degraded for both variants. We
can observe that for the majority of metrics the 2 Operators
variant gives better results than the 3 Operators variant. We
can note that only the 2 Operators variant is accurate, i.e.
only the 2 Operators variant learns domains able to solve the
majority of planning problems. For the fourth experimental
scenario all metrics are degraded for both variants. We can
observe that for the majority of metrics the 3 Operators vari-
ant gives better results than the 2 Operators variant. For the
fifth experimental scenario all metrics are degraded for both

variants. We can observe that for the majority of metrics the
2 Operators variant gives better results than the 3 Opera-
tors variant. We can note that only the 2 Operators variant is
accurate. For the last experimental scenario all metrics are
degraded for both variants. We can observe that for the ma-
jority of metrics the 2 Operators variant gives better results
than the 3 Operators variant. We can note that both variants
are not accurate.

Finally for the the Sokoban domain, we observe that for
the first experimental scenario, both variants learn optimal
domains. For the second experimental scenario the 2 Opera-
tors learns optimal domains. All metrics are degraded for the
3 Operators variant, however learnt domains stay accurate.
For the third experimental scenario all metrics are degraded
for both variants. We can observe that for the majority of
metrics the 2 Operators variant gives better results than the
3 Operators variant. We can note that only the 2 Operators
variant is accurate. For the fourth experimental scenario all
metrics are degraded for both variants. We can observe that
for the majority of metrics the 3 Operators variant gives bet-
ter results than the 2 Operators variant. We can note that both
variants are not accurate. For the fifth experimental scenario
all metrics are degraded for both variants. We can observe
that for the majority of metrics the 3 Operators variant gives
better results than the 2 Operators variant. We can note that
both variants are not accurate. For the last experimental sce-
nario all metrics are degraded for both variants. We can ob-
serve that for the majority of metrics the 2 Operators variant
gives better results than the 3 Operators variant. We can note

that both variants are not accurate.
To conclude, we can observe that the 2 Operators vari-

ant is generally more robust than the 3 Operator variants.
Also, for the majority of domains TempAMLSI learns accu-
rate domains when observations are complete whatever the
level of noise. When observations are partial TempAMLSI
is generally not able to learn accurate domains with a high
level of noise.

SHE Temporal Domains Table - 3 gives results for SHE
Temporal Domains.

First of all, for the the Match domain, we observe that for
the first experimental scenario, both variants does not learn
optimal domains. Indeed, FScore is not optimal. This is due
to the fact that learnt domains are not able to generate some
feasible action sequences. However this does not affect the
accuracy which is optimal for both variants. For the second
experimental scenario only the syntactical distance and the
FScore are degraded for the 2 Operators variant. All met-
rics are degraded for the 3 Operators variant, however learnt
domains stay accurate. For the third experimental scenario
all metrics are degraded for both variants. We can observe
that for the majority of metrics the 2 Operators variant gives
better results than the 3 Operators variant. We can note that
only the 2 Operators variant is accurate. For the fourth exper-
imental scenario all metrics are degraded for both variants.
We can observe that for the majority of metrics the 3 Opera-
tors variant gives better results than the 2 Operators variant.
We can note that both variants are not accurate. For the fifth
experimental scenario all metrics are degraded for both vari-
ants. We can observe that for the majority of metrics the 3
Operators variant gives better results than the 2 Operators
variant. We can note that both variants are not accurate. For
the last experimental scenario all metrics are degraded for
both variants. We can observe that for the majority of met-
rics the 3 Operators variant gives better results than the 2
Operators variant. We can note that both variants are not ac-
curate.

Finally, for the Turn and Open domain, we observe that
for the first experimental scenario, both variants learn op-
timal domains. For the second experimental scenario the 2
Operators variant learns optimal domains. All metrics are
degraded for the 3 Operators variant, however learnt do-
mains stay accurate. For the third experimental scenario all
metrics are degraded for both variants. We can observe that
for the majority of metrics the 2 Operators variant gives bet-
ter results than the 3 Operators variant. We can note that
both variants are not accurate. For the fourth experimental
scenario all metrics are degraded for both variants. We can
observe that for the majority of metrics the 3 Operators vari-
ant gives better results than the 2 Operators variant. For the
fifth experimental scenario all metrics are degraded for both
variants. We can observe that for the majority of metrics the
3 Operators variant gives better results than the 2 Opera-
tors variant. We can note that only the 3 Operators variant is
accurate. For the last experimental scenario all metrics are
degraded for both variants. We can observe that for the ma-
jority of metrics the 3 Operators variant gives better results
than the 2 Operators variant. We can note that both variants

are not accurate.
To conclude, we can observe that the 2 Operators variant

is generally more robust than the 3 Operator variants when
observations are complete whatever the level of noise. When
observations are partial the 2 Operators variant is more ro-
bust than the 3 Operators variant only for the match domains.
Also, for all domains TempAMLSI learns accurate domains
when the level of noise is not high whatever the level of ob-
servability. With a high level of noise TempAMLSI learns
accurate domains only for the Match domains.

6 Conclusion
In this paper we presented TempAMLSI, a novel algorithm
to learn temporal PDDL domains. TempAMLSI is based
on the AMLSI approach. In this paper we reused the idea
to use classical PDDL domain proposed by several tem-
poral planners. More precisely, TempAMLSI converts the
temporal sample into a sample containing non-temporal se-
quences, then TempAMLSI uses the AMLSI algorithm to
learn a classical PDDL domain and convert it into a tem-
poral PDDL domain, Finally, we show experimentally that
the TempAMLSI approach was able to learn domains with
sequential sequences and single hard envelopes with par-
tial and noisy observations. In future works, TempAMLSI
will be extended to learn temporal PDDL domain with other
form of required action concurrency than Single Hard En-
velopes.

Acknowledgments
This research is supported by the French National Re-
search Agency under the ”Investissements d’avenir” pro-
gram (ANR-15-IDEX-02) on behalf of the Cross Disci-
plinary Program CIRCULAR.

References
Celorrio, S. J.; Jonsson, A.; and Palacios, H. 2015. Tem-
poral Planning With Required Concurrency Using Classical
Planning. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling, ICAPS
2015, Jerusalem, Israel, June 7-11, 2015, 129–137.

Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artif. Intell. 173(1): 1–44.

Cresswell, S.; McCluskey, T.; and West, M. 2009. Acquisi-
tion of Object-Centred Domain Models from Planning Ex-
amples. In Proc. of the International Conference on Auto-
mated Planning and Scheduling, ICAPS.

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In IJ-
CAI 2007, Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, 1852–1859.

Fox, M.; and Long, D. 2002. Fast Temporal Planning in a
Graphplan Framework. In AIPS 2002 Workshop on Planning
for Temporal Domains, Toulous, France, April 24, 2002, 9–
17.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res. 20: 61–124.

Furelos Blanco, D.; Jonsson, A.; Palacios Verdes, H. L.; and
Jiménez, S. 2018. Forward-search temporal planning with
simultaneous events. In 13th Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling, AAAI.

Garrido, A.; and Jiménez, S. 2020. Learning Temporal Ac-
tion Models via Constraint Programming. In ECAI 2020
- 24th European Conference on Artificial Intelligence, 29
August-8 September 2020, Santiago de Compostela, Spain,
August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS
2020), 2362–2369.

Grand, M.; Fiorino, H.; and Pellier, D. 2020a. AMLSI: A
Novel and Accurate Action Model Learning Algorithm. In
Proc. of the International Workshop on Knowledge Engi-
neering for Planning and Scheduling (KEPS).

Grand, M.; Fiorino, H.; and Pellier, D. 2020b. Retro-
engineering state machines into PDDL domains. In Proc.
of the International Conference on Tools with Artificial In-
telligence (ICTAI), 1186–1193.

Halsey, K.; Long, D.; and Fox, M. 2004. CRIKEY-a tempo-
ral planner looking at the integration of scheduling and plan-
ning. In Workshop on Integrating Planning into Scheduling,
ICAPS, 46–52. Citeseer.

Howey, R.; and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2. 1 used in the international
planning competition. In Proc. of International Planning
Competition workshop (ICAPS), 28–37.

Kucera, J.; and Barták, R. 2018. LOUGA: Learning Plan-
ning Operators Using Genetic Algorithms. In Proc. of Pa-
cific Rim Knowledge Acquisition Workshop, PKAW, 124–
138.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language.

Mourão, K.; L.Zettlemoyer; Petrick, R.; and Steedman, M.
2012. Learning STRIPS Operators from Noisy and Incom-
plete Observations. In Proc. of the International Conference
on Uncertainty in Artificial Intelligence, 614–623.

Oncina, J.; and Garcı́a, P. 1992. Inferring regular languages
in polynomial update time. In Pattern Recognition and Im-
age Analysis: Selected Papers from the IVth Spanish Sympo-
sium, volume 1, 49–61. World Scientific.

Rijsbergen, C. 1979. Information Retrieval. Butterworth-
Heinemann.

Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental Learning of Relational Action Models in Noisy En-
vironments. In Proc. of the International Conference on In-
ductive Logic Programming, ILP, 206–213.

Segura-Muros, J.; Pérez, R.; and Fernández-Olivares, J.
2018. Learning Numerical Action Models from Noisy
and Partially Observable States by means of Inductive Rule

Learning Techniques. In Proc. of International workshop on
Scheduling and Knowledge Engineering for Planning and
Scheduling KEPS, 46–53.
Shahaf, D.; and Amir, E. 2006. Learning Partially Observ-
able Action Schemas. In In Proc. of the National Conference
on Artificial Intelligence, 913–919.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artif.
Intell. 171(2-3): 107–143.
Zhuo, H.; Nguyen, T.; and Kambhampati, S. 2013. Refining
Incomplete Planning Domain Models Through Plan Traces.
In Proc. of the International Joint Conference on Artificial
Intelligence, IJCAI, 2451–2458.
Zhuo, H.; Yang, Q.; Hu, D.; and Li, L. 2010. Learning com-
plex action models with quantifiers and logical implications.
Artif. Intell. 174(18): 1540–1569.

