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Abstract

Automated planning is a prominent AI challenge, and it is
now exploited in a range of real-world applications. There
are three crucial aspects of automated planning: the planning
engine, the domain model, and the problem instance. While
the planning engine and the domain model can be engineered
and optimised offline, in many applications there is the need
to generate problem instances on the fly.
In this paper we focus on the challenges of on-the-fly knowl-
edge acquisition for complex and variegated problem in-
stances. We consider as a case study the application of plan-
ning to urban traffic control and we describe the designed and
developed knowledge acquisition process. This allows us to
discuss a range of lessons learned from the experience, and to
point to important lines of research for support the knowledge
acquisition process for automated planning applications.

Introduction
Automated planning is one of the most prominent AI chal-
lenges; it has been studied extensively for several decades,
and it is now exploited in a wide range of applications. Ex-
amples include network security penetration testing (Hoff-
mann 2015), battery load management (Fox, Long, and
Magazzeni 2012), and control of robots (Kvarnström and
Doherty 2010; Capitanelli et al. 2018).

The three aspects in automated plan generation focused
on in the AI literature are the planning engine itself, the do-
main model that captures the physics of the problem area,
and the problem instance that contains the initial state and
the goal. Planning engines used in real-world applications
rely on the ability that utilising the operational semantics of
the domain model will faithfully simulate progression over
time of the state of the real world (in particular, crucial in
the validation of any generated plan). Not only has the do-
main model to be an accurate representation of the applica-
tion’s dynamics for this purpose, but the problem instance
has to adequately and accurately reflect the current state of
the world, and the goal required to be solved. Knowledge
engineering and knowledge acquisition issues of the men-
tioned models and instances are exacerbated in real-time AI
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planning applications, where the problem instance must be
acquired on the fly to allow an agent to deal with problems
as they occur. Beside knowledge engineering issues related
to the engineering of the domain model that have received
significant coverage (McCluskey and Porteous 1997; Mc-
Cluskey, Vaquero, and Vallati 2017; Vallati and McCluskey
2021) there is the critical aspect of generating problem in-
stances on the fly. This is also important taking into account
how poor quality of problem instances can affect the abil-
ity of state-of-the-art planning engines to solve (Vallati and
Chrpa 2019). Indeed, automation in the construction of a
complex initial state not only aids the quality of the prob-
lem instance, but helps in the efficiency of knowledge cap-
ture. The latter is essential for the cost-effectiveness of em-
ploying automated planning in applications. Early work on
such automation was demonstrated in the nine contestants
of the International Competition on Knowledge Engineer-
ing for Planning and Scheduling (ICKEPS) 2009 (Barták,
Fratini, and McCluskey 2010), which focused on automa-
tion in the generation of planning knowledge from existing
application-held data structures, and by recent works on us-
ing templates to generate instances (Long, Dolejsi, and Fox
2018; Gregory 2020).

In this paper we focus on aspects of knowledge acquisi-
tion in real-time applications where the initial state is com-
plex and variegated, consisting of (i) persistent or static
structures, and (ii) a set of values that must be acquired and
processed on the fly. We consider as a case study the applica-
tion of AI planning to urban traffic control (McCluskey and
Vallati 2017) for generating in real time traffic signal strate-
gies for a major road corridor of the Kirklees council, that
is situated in the Yorkshire county of the United Kingdom.
We describe the knowledge acquisition process that has been
designed and developed, and we take the opportunity to pro-
vide insights into the challenges of generating, validating,
and verifying complex initial states on the fly. In particular,
we discuss the lessons learned, and we point to important
lines of research for knowledge acquisition to foster the use
of AI planning in real-world applications.



Research Context
Traditional approaches to urban traffic control are based on
the idea of generating fixed strategies for frequent traffic pat-
terns, such as morning and evening peaks, and off peaks.
This approach is problematic when unusual or unexpected
events happen: considering the impact of COVID-19, for in-
stance, traffic volumes have suddenly varied from −80% to
+30% of typical pre-COVID traffic conditions, and the com-
position and journeys of traffic has drastically changed as
well. To deal with such quickly-changing conditions strate-
gies of interventions have to be generated on the fly, consid-
ering the current actual conditions of the network. Generat-
ing a detailed strategy of interventions to manage an unusual
situation in real time is considered to be beyond the capacity
of human operators. In this situation, automated planning
can help strategy generation if data describing the current
situation is available and adequate, and a domain model has
been constructed and validated to mirror the application do-
main.

In this paper we consider an urban road traffic manage-
ment scenario, where strategies generated are changes to
traffic signal timings over a period of time, in response to
some real-time goal. Transport operators need the ability to
produce regional strategies in real time which will deal with
abnormal or unexpected events such as road closures and in-
cidents. These cause huge delays and decreased air quality
because of excessive congestion and stationary traffic. The
existing conditions and set of corrective goals required to
deal with these events are so varied that detailed strategies
are impossible to draw up a priori in a large, dense urban
area.

There is a growing interest of the planning and schedul-
ing community in dealing with urban traffic control prob-
lems, particularly with regards to traffic signal control. On
the scheduling side the SURTRAC approach utilises a dis-
tributed scheduling system which controls traffic signals in
urban areas (Xie, Smith, and Barlow 2012; Hu and Smith
2019; Smith 2020). In SURTRAC, each junction is con-
trolled by a scheduling agent that communicates with con-
nected neighbours to predict future traffic demand, and to
minimise predicted vehicles waiting time at the traffic sig-
nal. It is currently deployed in Pittsburgh, USA, with its
distributed approach suggesting good scale-up but less goal
flexibility than if utilising a centralised AI planner.

On the planning side, Gulic et al’s system (Gulić, Oli-
vares, and Borrajo 2016) involves joining together a SUMO
simulator (Lopez et al. 2018) to an AI Planner, via a mon-
itoring and execution module called the “Intelligent Auto-
nomic System”. The planning representation was done using
PDDL 2.1 (Fox and Long 2003), with no explicit representa-
tion of vehicles in the planner. Instead, traffic concentrations
on road links are represented by relative density descriptors,
such as very-low, low, medium and high. Traffic light change
actions are enumerated to cover all the ways that a particular
configuration would effect the arrangements of road links.
By abstracting away from explicit counts of vehicles, the
system can deal with regions containing thousands of ve-
hicles. Also, the close coupling with SUMO demonstrates
the use of monitoring and replanning very effectively, and

allows exhaustive testing of the system under sets of distur-
bances (vehicle influx, road closures). The work by Pozanco,
Fernández, and Borrajo (2021) exploits a similar approach
to those of Gulic et al, but extends it in a number of ways:
the most remarkable being the ability to learn and contin-
uously evolve the knowledge model to better adapt to the
network behaviour. In a different line of work Vallati et al.
(2016) and McCluskey and Vallati (2017) exploit PDDL+
for encoding a flow model of vehicles through traffic-light
controlled junctions. The length of traffic light phases are
under the control of the planner, that can decide to priori-
tise some traffic flows, in order to reach specified goals (a
phase determines which of the flows through that junction
are on and have traffic flowing). Goals are specified in terms
of numbers of vehicles desired on some critical road links.

Description of the Case Study
In this section we briefly introduce the PDDL+ problem
model, and then describe the characteristics of the target ur-
ban region. Here we build on the work done by McCluskey
and Vallati (2017) to use PDDL+ planning to generate strate-
gies for dealing with unexpected or abnormal circumstances
in a controlled urban region, such as accidents, roadworks,
etc.

The Problem Model
A region of the road network can be represented by a di-
rected graph, where edges stand for road links and vertices
stand for junctions. One vertex is used for representing the
outside of the modelled region. Intuitively, vehicles enter
(leave) the network from road sections connected with the
outside. Each link has a given maximum capacity, i.e. the
maximum number of vehicles that can be, at the same time,
in the corresponding road, and the current number of vehi-
cles of a road link, which is denoted as occupancy.

Traffic in junctions is distributed by flow rates that are
defined between couples of road links, only for permitted
traffic movements. Given two links rx, ry , a junction i, and
a traffic signal stage p such that rx is an incoming link to
the junction i, ry is an outgoing link from i, and the flow
is active (i.e., has green light) during stage p, the flow rate
(rx,ry ,i,p) stand for the maximum number of vehicles that
can leave rx, pass through i and enter ry per time unit. For
the sake of simplicity, we assume that vehicles going in the
same direction move into the correct lane, thus not blocking
other vehicles going in the different directions.

Junctions are described in terms of a sequence of traffic
signal stages. Specifically, junctions contain a signal stage,
and stages are connected using a next predicate to define
their sequence. According to the active traffic stage, one (or
more) flow rates are activated, corresponding to the traffic
lights that are turned green. For each phase, the minimum
and maximum stage length is specified. Within this range,
the planner can decide whether to stop the phase currently
active, or not. Between two subsequent signal stage, an in-
tergreen interval is specified. Intergreens are (usually) short
periods of time designed to allow vehicles that are stacked
in the middle of the junction to leave, and pedestrian cross-
ing time, before the next stage is started. The model was



encoded so that some junctions can be declared as not un-
der the control of the planner, by introducing a controllable
predicate.

Given a fully specified traffic planning problem, and us-
ing a domain model based on that described in McCluskey
and Vallati (2017), the goal is currently specified in terms
of desired occupancy of some road links, to be obtained as
soon as possible by generating a traffic signal strategy that
optimises the length of traffic stages on the controlled junc-
tions.

The Urban Region
The modelled area is situated in West Yorkshire, United
Kingdom, specifically within the Kirklees council. It con-
sists of a major corridor that links the Huddersfield ring road
with the M1 highway and the southern part of the Kirklees
council. It is heavily used by commuters and by delivery
vans to get to the centre of the Huddersfield town, or to move
between the M62 and the M1 highways. The corridor con-
sists of 6 junctions and 34 road links. Each junction has be-
tween 4 and 5 stages, and between 10 and 17 valid traffic
movements.

Differently from previous works, where AIMSUN or
SUMO models were used (Vallati et al. 2016; McCluskey
and Vallati 2017), for the considered area there is no traf-
fic model available. This poses a significant challenge for
the exploitation of AI planning approaches, both in terms of
data collection and in terms of validation of the generated
strategies. All the junctions of the area are controlled us-
ing SCOOT (Taale, Fransen, and Dibbits 1998). SCOOT is a
demand driven, traffic responsive control aimed at handling
cycle-to-cycle changes in demand. In response to changes in
traffic flows, SCOOT would gradually adapt and adjust the
traffic signal timings. SCOOT is dependent on its own local
data sensors, usually inductive loops embedded in the road
surface. Further, SCOOT stores the data coming from its
sensors, and its internal behaviour, into a dedicated database
called ASTRID (Hounsell and McDonald 1990). The data
stored into ASTRID become a valuable source of knowledge
that can be used to automatically extract information about
the structure of the controlled region, as well as its current
condition.

On-the-fly Instance Generation
For the considered case study, the planning system would
be invoked when unusual circumstances are recorded in the
controlled region. When this is the case, there is the need
to generate on the fly a planning problem instance that ac-
curately describes the traffic network, and its current con-
dition. It is pivotal to generate instances on the fly also be-
cause the quality and informativeness of data, particularly
with regards to traffic flows, decay very quickly over time:
to contextualise this aspect, let just consider that the traffic
demand in 15 minutes will include vehicles that, at the cur-
rent time, are tens of kilometres away from the controlled
region. There is a broad range of events that can affect traf-
fic flows in such a large spatio-temporal space.

For designing and developing the on-the-fly knowledge

acquisition process, we took a systematic approach. Start-
ing from the problem model specification, data required for
the initial state description have been classified according
to their static or dynamic nature with regards to the re-
gion in object. The former refers to data that do not change
within the class of problems that it is currently addressed
(in other words, does not change when the considered ur-
ban region remains the same). The latter instead, refers to
elements that continuously change according to the status
of the network and of its junctions and links. This discrim-
ination is made in terms of PDDL+ predicates of the initial
state description. For each required PDDL+ predicate, the
relevant data sources have been identified, its format spec-
ified, and the flow from raw data to the PDDL+ predicate
has been defined and documented. Static data is extracted
once, via a dedicated pipeline, thoroughly validated and then
stored in an appropriately structured knowledge base. Dy-
namic data instead have to be extracted on-demand, and ded-
icated adaptors and processing steps have to be designed and
deployed. Further, where possible, validation and verifica-
tion approaches have been put in operation – to take into
account faulty data or flaws in the data flow.

Considering the case study problem, the following data
are static for the urban region on which we are focusing:

1. The topology of the road links, junctions, and region
boundaries.

2. The vehicle capacity of all the road links. In our model,
this is given in numbers of “passenger car units” –PCU–
which takes into account the differing size of vehicles.

3. The traffic signal position, stages of signals, minimum and
maximum time that a signal stage can be set for.

4. Intergreen timings. Their duration is dependent on stages
(preceding and succeeding) and junction.

5. The permitted traffic movements in a junction, i.e. for
each incoming link ri to a junction, all the destination
links that can receive traffic from ri via the considered
junction.
A large amount of data is instead dynamic, and need to

be adapted and processed according to the day and time that
the considered problem is modelling.

A. The average traffic flows between links in number of
PCU’s per second. This number represents the number
of vehicles flowing via a particular traffic movement of
a junction at the considered time of day, when the corre-
sponding traffic signal stage is green. A special case of
this are flows in and out of boundary junctions.

B. The occupancy of the links of the network at the initial
considered time, i.e. the number of vehicles for each of
the links, expressed in PCUs.

C. The state of all the junctions, in terms of stage currently
active (or intergreen) and time spent in that state.

Further, there is another kind of data that can possibly be
required: the way in which the unusual circumstances are
affecting the controlled region. For instance, in the case of a
car crash, a lane may operate at reduced capacity, affecting
the incoming and outgoing traffic flows. This kind of data
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Figure 1: Overview of the knowledge acquisition process for generating a planning instance for the case study. Green arrows
indicate input to be provided. Numbers and capital letters refer to the corresponding type of static and dynamic data.

can be labelled as dynamic-unpredictable, since it is impos-
sible to accurately predict, and it is strongly dependent on
the current circumstances.

Figure 1 provides an overview of the framework that has
been designed to automatically generate a problem instance,
green arrows indicate necessary input. This comes under the
form of (i) SCOOT data being generated in real-time and
stored into the ASTRID database; (ii) specification of links,
junctions, etc. not under the direct control of SCOOT and
therefore not included in ASTRID; (iii) a manual specifica-
tion of the goal to be achieved; (iv) manual specification of
the changes to the model due to the unexpected conditions
(if needed), and (v) a specification of the considered date
and initial time. Date and time are needed to correctly de-
fine the initial state of the problem, particularly with regard
to dynamic data.

The ASTRID database represents the cornerstone of the
architecture, as it stores all the data generated and sensed by
the SCOOT system deployed in the region. From ASTRID, a
number of reports, under the form of structured files, are ex-
tracted and processed, in order to produce the data required
for the initial state description of the planning problem. It
should be noted that for a given region, ASTRID is not the
only source of data about the structure of the network. There
is usually a number of links and junctions not under the di-
rect control of a SCOOT system, that are therefore missing.
This type of additional data can come under different forms:
for the considered case study, it was extracted by manually
checking maps of the region. Static data of type 1–5 is gen-
erated once for a considered urban region, and it requires to
extract network information from ASTRID, that allows to
understand the structure of the modelled network, in terms
of junctions, links, legal traffic movements, etc. Such static
data is then also needed to calculate dynamic traffic flows
(A) for a specified day and time. This is to be done by con-
sidering historical data for similar period of the year, time of

the week, and time of the day. Finally, dynamic data about
link occupancy and state of traffic lights (B and C) is gener-
ated by processing some dedicated reports.

Discussion and Lessons Learned
This section focuses on the main lessons learned from the
challenges we had to overcome, and those still outstanding.

Complexity of the acquisition process. Previous applica-
tions of AI planning to urban traffic control relied on the
use of a traffic simulator as a proxy for the real world. This
greatly simplifies the knowledge acquisition process: all the
elements are already named using a unique identifier, data
are consistent, and all the units of measurement are unified
and coherent. That is usually not the case when planning
knowledge models have to be generated on-the-fly from a
multitude of different data sources, including historical data,
real-time sensors, etc. As we early discovered when mod-
elling the case study area, the same entities can be named in
different ways according to: (i) the data source, and (ii) the
expected use of the corresponding bit of information. There
is also no guarantee that data stored in different databases
are consistent and correct when pulled together, and that
the same measurement units are used. In practice, the above
means that there is the need to: (i) fully assess and under-
stand all the data sources to be able to grasp the differ-
ences; (ii) design and develop dedicated interfaces for each
source to extract and format data; (iii) design and develop
approaches to merge data pulled from different sources, and
(iv) thoroughly validate and verify that once merged, the re-
sulting knowledge is correct and operational. In the absence
of a unified model that encompasses all the data sources, the
final validation and verification step is extremely cumber-
some, and may require manual validation and verification.
In our case study, we had to resort to manual verification



and debugging of static data (as for Figure 1).

Data interpretation. Data pulled from different sources
may require different interpretations. This is not directly
connected to the inconsistent use of identifiers or measure-
ment units, but more related to the semantic of data. The cor-
rect interpretation is usually not explicitly described in the
database or in the pulled file / report, as it is not needed by
domain experts, but is instead described in a dedicated docu-
mentation. Documentation that again is designed for domain
experts, and heavily relies on domain-specific acronyms and
concepts. While in many cases there is a single semanti-
cally and syntactically correct interpretation, there are cases
where the syntax of the data structure can lend itself to multi-
ple interpretations – those cases are the more challenging to
deal with, as the fact that an incorrect interpretation is used
can be hard to spot. In our case study we faced this issue
with one of the reports generated by the ASTRID system.
The report provides the sequence of one type of model mes-
sage (out of 94 types of model messages) under the name
of M37 messages, that are generated by SCOOT to record
traffic light stages duration. Such report has a single line per
message, and its syntax supports two alternative interpreta-
tions: one where a message describes what is going to hap-
pen next, and the other where a message retrospectively de-
scribes what just happened. Selecting the wrong interpreta-
tion can hinder the exploitation of the overall planning-based
traffic control approach, as initial condition of the planning
problem will not accurately reflect the real-world status.

Verification of the initial state. In recent years, there has
been a growing interest of the planning community in tools
and techniques for supporting the design and deployment
of planning techniques in complex real-world applications
(Vallati and Kitchin 2020). This resulted in tools such as
VS-studio (Long, Dolejsi, and Fox 2018) and approaches
that rely on templates to generate initial state descriptions
of planning problems (Gregory 2020). However, most of the
existing tools do not provide appropriate support for the ver-
ification of the initial state of a planning problem. This issue
can have a limited impact when less expressive planning for-
malisms (such as classical or numeric planning) are used, but
becomes pivotal for PDDL+. Existing tools for supporting
the knowledge acquisition of PDDL+ initial state descrip-
tions mostly rely on templates for automatising the process
given a valid, correct and consistent knowledge base from
which the initial state can be derived. There is a lack of ap-
proaches that, given a PDDL+ domain and problem models,
can help to verify whether the provided initial state descrip-
tion is syntactically correct, but semantically wrong for the
application domain. In the considered case study, examples
of this include cases where the maximum green time is lower
than the minimum, or where some of the traffic flows have
negative values. Due to the semantic of PDDL+, such issues
are hard to debug, as they may not prevent a planning en-
gine from generating plans. To be automatically fixed, they
require dedicated techniques to be developed, either based
on the knowledge encoded in the domain model, or based on

some additional knowledge provided aside from the PDDL+
models.

Goal definition. In the urban traffic control domain, there
are both qualitative and quantitative ways to define desirable
conditions of a traffic network. However, it is not straightfor-
ward to translate them into an AI planning goal definition, as
required by the used PDDL+ language. On the one hand, the
general idea of having a goal to reach suits the application
domain, as the planning-based approach is expected to be
utilised when unexpected or unusual issues arise; this kind
of exploitation supports the definition of a goal to be reached
to mitigate or solve the detrimental effects of the issue(s). On
the other hand, in many cases there is not a direct transla-
tion between the traffic engineering ”goal” conditions, and a
PDDL+ formula that describes the properties of the desired
status of the network. In its current implementation, the goal
definition is left to be manually specified. A step towards
a fully automated on-the-fly generation of problem models
is the use of predefined goal templates: considering a range
of expected issues, templates of goal definitions can be de-
signed. On the fly, an appropriate template can be selected
and populated according to the characteristics of the plan-
ning problem at hand. This will require the integration of
dedicated techniques for guaranteeing that the goal is reach-
able and it fits the needs of the network conditions – ensuring
that it will not lead to a worsening of the issues.

Validation of generated plans. Even though it is not
shown in Figure 1, validation is a crucial step of the knowl-
edge acquisition process, and of the deployment of the plan-
ning system. There exists a range of approaches to validate
PDDL+ plans: VAL (Howey, Long, and Fox 2004) is a well-
known tool; planning engines such as ENHSP (Scala et al.
2020) include validation modules, and KE tools such as VS-
studio can support validation by using VAL and providing
visual representation of the plan. Existing validation tools
are designed to return binary output about the validity of
the plan with regards to the considered models, and maybe
some additional information about PDDL+ events and pro-
cesses that are not explicitly mentioned in plans. There is a
lack of support for the identification of the reasons why a
plan fails the validation check, and the suggestion of correc-
tive actions. In PDDL+, the need is exacerbated by the fact
that events and processes are automatically triggered and ex-
ecuted, and not shown (or not easy to follow) in the solution
plan.

Dynamic-unpredictable data. This kind of data is ex-
tremely hard to acquire, as it is heavily dependent on cur-
rent circumstances and the way in which they affected the
network. For instance, a crash on a link will reduce the ca-
pacity of the link, or some unplanned roadworks can change
the valid traffic movements of a junction. From a modelling
perspective, such cases can be handled in two ways, (i) by
modifying the static data to reflect the changes in the topol-
ogy and structure of the network, and (ii) by modifying the
dynamic data appropriately. As an example of type (ii), the



fact that a traffic movement is not allowed in a junction can
be modelled by assigning it a value of 0.0 PCUs per sec-
ond – i.e. no vehicles move through that. When possible,
we are currently following the second approach, as it does
not require to modify the static data and the corresponding
pipeline. However, these changes have to be done manually
with the support of a domain expert. Further, there are cases
where this approach will not work, for instance in the ex-
treme case of a crash or a failure that puts out of operation
the traffic lights on a junction. Such cases have to be manu-
ally addressed, to make sure that the knowledge encoded in
the problem instance accurately reflects the modifications.

Uncertainty. Planning in the urban traffic control domain
involves a significant degree of uncertainty. First, as de-
scribed in the above paragraph, there are aspects that are ba-
sically impossible to predict. Second, as dynamic data is col-
lected from sensors, there can be measurement errors, and
sensors can be faulty. Measurement errors are quite common
in the presence of SCOOT pressure sensors that cover mul-
tiple lanes: they tend to underestimate the volume of traf-
fic as multiple vehicles crossing the sensors concurrently
over different lanes are counted as a single vehicle. Third,
the SCOOT system does provide sensors readings for a link
only when the green time for that link terminates. In other
words, there can be variable distances between two subse-
quent readings and, at the point in time when the initial state
description of the planning problem instance is generated,
some links will have more recent readings than others. This
has the potential to increase the noise of the initial state. In
our case study, the first class of uncertainty has been dealt
with by the support of human experts that are manually de-
scribing how the event is affecting the model. The second
is dealt with by including in the processing appropriate cor-
rection factors, and checking for unusual values that can in-
dicate malfunctioning of a sensor. Finally, the third type of
uncertainty is currently dealt with by averaging the values
between two subsequent readings. In the future, we plan to
employ an approach based on warm-ups, as used by other
traffic simulators, where the planning system is run over a
short period of time, to stabilise the modelled traffic condi-
tions, before the actual planning process is started.

Transferability of the acquisition process. With regards
to the knowledge acquisition process presented in the previ-
ous sections and shown in Figure 1, a question that naturally
arises is: how easy would it be to transfer such process to a
different urban region? In principle, the overall process that
allowed to design the exploited knowledge acquisition ar-
chitecture, that includes discriminating between static and
dynamic data, identifying relevant data sources, etc., can
be easily transferred between urban regions. However, the
adaptors and parsers designed for the case study, as well as
the designed approaches for validating and verifying the ac-
quired knowledge, are not likely to be transferred. This is be-
cause different traffic authorities rely on different databases
and different ways to structure data. Further, they may not
use SCOOT systems, or may have a traffic simulation model

of the region to be controlled. These are all factors that will
require a different flow of data, from raw to PDDL+. On the
other hand, the experience gained in the case study can be
fruitfully exploited to speed up the process, and to avoid re-
peating mistakes. The above question can be stretched also
to the transferability of the knowledge acquisition process
to different application domains. The intuition is that the
systematic approach that lead to the design of the acquisi-
tion process can be transferred to different application do-
mains, assuming the application domain does not involve
life-critical operations. In that case, a significant effort has
to be dedicated to ensuring that acquired knowledge is cor-
rect and safe. In the case of urban traffic control, this safety
aspect is mitigated by the fact that traffic lights are forced
to follow very strict regulations, and will ignore commands
from the planning system that do not comply with such reg-
ulations.

Conclusion
In this paper we described the approach developed for gen-
erating on the fly complex problem instances, to be used for
real-time planning of traffic light signals in a urban traffic
network. Beside the need to generate instances on the fly, the
complexity of the knowledge acquisition process is exacer-
bated by the different kind of data and multiple data sources
involved – this is very different from the traditional way in
which planning approaches are tested using simulators or
thoroughly checked benchmark instances.

We exploited this opportunity to highlight the challenges
that this kind of knowledge acquisition poses, and to present
the solutions we used to address them in the considerede
case study. We observed that there is a lack of support, in
terms of tools and techniques, for the validation of generated
solutions, the verification of the acquired knowledge, and the
inspection of models. While this is partly due to the PDDL
language, that does not allow to describe for instance the
characteristics of valid states, there is also a lack of work in
the area from the planning community, as highlighted by a
recent analysis (Chrpa et al. 2017; Vallati and McCluskey
2021).

We see several avenues for future work. First, we are in-
terested in designing approaches to verify initial states ex-
pressed in PDDL+; this can be done either by leveraging on
additional knowledge provided as an attachment to a plan-
ning model, or by analysing the characteristics of the domain
model to identify suspicious trajectories. Second, we plan to
extend the capabilities of existing validation approaches, to
provide additional support when plans are analysed. Finally,
we are working on a language for supporting the goal spec-
ification, that allows domain experts to express goals in a
way that can then be translated into actual PDDL+ code.
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