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Abstract
Temporal plan preferences are natural and important in a va-
riety of applications. Yet users often find it difficult to for-
malize their preferences. Here we explore the possibility to
learn preferences from example plans. Focusing on one pref-
erence at a time, the user is asked to annotate examples as
good/bad. We leverage prior work on LTL formula learning
to extract a preference from these examples. We conduct an
empirical study of this approach in an oversubscription plan-
ning context, using hidden target formulas to emulate the user
preferences. We explore four different methods for generating
example plans, and evaluate performance as a function of do-
main and formula size. Overall, we find that reasonable-size
target formulas can often be learned effectively.
This paper was accepted at IJCAI21.

1 Introduction
Temporal plan preferences are natural and important in
a variety of applications. The PDDL3 language (Gerevini
et al. 2009) provides support for their specification, and
planning algorithms to handle such preferences have been
deeply investigated (Edelkamp 2006; Baier and McIlraith
2006; Baier, Bacchus, and McIlraith 2009; De Giacomo,
De Masellis, and Montali 2014; Torres and Baier 2015; Ca-
macho and McIlraith 2019b). Yet users often find it difficult
to formalize their preferences.

In particular, our work is motivated by a recent approach
to analyze dependencies between plan properties (Eifler
et al. 2020a,b) in oversubscribed planning tasks where not
all plan properties – which correspond to user preferences
– can be satisfied. Rather than assuming that each prefer-
ence is associated with a reward as in standard oversubscrip-
tion planning (Smith 2004; Domshlak and Mirkis 2015), the
approach analyzes which (subsets of) preferences exclude
which other ones. The aim is to explicate the space of possi-
ble plans in situations where rewards are inadequate or diffi-
cult to elicit. Since the explication is done in terms of depen-
dencies between preferences, users need to provide a sizable
set of preferences spanning the aspects of plan space they
are interested in. How to ease this burden?

Here we explore the possibility to learn temporal plan
preferences from annotated example plans. We do so one
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preference at a time: our envisioned specification process is
a loop over preferences to be learned, where in each itera-
tion the user is asked to focus on one plan property of inter-
est. We generate example plans, and the user annotates them
as good/bad with respect to that property. We then leverage
prior work (Neider and Gavran 2018; Camacho and McIl-
raith 2019a; Kim et al. 2019) to learn an LTL formula cor-
rectly characterizing these positive/negative examples, ex-
tracting a formalized preference. The same steps can be re-
peated to extract other preferences until the user stops the
process.

This approach itself is fairly straightforward, and its
building blocks are known. Indeed, we employ Camacho
and McIlraith’s (Camacho and McIlraith 2019a) techniques,
and our work is essentially an application thereof. Our con-
tribution lies in assembling these known techniques, and em-
pirically studying their merits for plan preference learning.

To emulate the user in systematic experiments, we employ
hidden target formulas. In each preference-learning step,
we:
(1) fix an LTL target formula φ;
(2) generate a set of example plans Π;
(3) annotate each π as good (bad) if it satisfies (does not

satisfy) φ; and
(4) invoke LTL formula learning to extract a formula φ′ cor-

rectly characterizing these examples.
In practice, the hidden target formula φ will be inside the
user’s head. Emulating users in this form allows us to
systematically evaluate the merits of different algorithmic
methods.

We instantiate (1) with hand-made formulas suited for
a collection of benchmarks, based on PDDL3 preferences
as well as formula skeletons often used in model check-
ing (Manna and Pnueli 1990; Dwyer, Avrunin, and Cor-
bett 1999; Menghi et al. 2019). We instantiate (4) with Ca-
macho and McIlraith’s (2019a) techniques, which learn a
smallest LTL formula φ′. The main question we consider
is how to instantiate (2). Top-K methods with a focus on di-
versity are natural candidates, as they aim at producing K
good-quality (in our context: short) yet qualitatively differ-
ent plans. This makes intuitive sense for our purposes as the
example plans should be different, and should not be ob-
viously bad. We experiment with three different methods



from the literature (Katz et al. 2018; Katz and Sohrabi 2020;
Speck, Mattmüller, and Nebel 2020). We furthermore exper-
iment with a simple randomized version of greedy best-first
search using hFF (Hoffmann and Nebel 2001), which turns
out to be more scalable.

We evaluate the performance of different methods as a
function of domain and formula size. We investigate a vari-
ety of aspects, including not only computational effort, but
also the quality of the learned formula φ′ relative to the hid-
den formula φ, and the quality of plan examples in the sense
of how many examples are needed to learn a high-quality
formula. Overall, we find that reasonable-size target formu-
las can often be learned effectively.

The paper is structured as follows. Section 2 gives the
planning context. Section 3 describes the building blocks
that we assemble in our approach, i. e., plan-generation tech-
niques, LTL formula learning, and temporal plan prefer-
ences. Section 4 explains our system architecture and imple-
mentation. Section 5 explains the experiments setup, before
we describe our empirical findings in Section 6.

2 Preliminaries
Oversubscription Planning
We are using a variant of oversubscription planning (OSP)
(Smith 2004; Domshlak and Mirkis 2015) with finite-
domain variables (Bäckström and Nebel 1995; Helmert
2009). An OSP task is a tuple τ = (V,A, c, I,Ghard, Gsoft,
b). V is the set of variables, A is the set of actions, c : A→
R+

0 is the action cost function, and I is the initial state.
Ghard (Gsoft) is the hard (soft) goal, given as a partial as-
signment to V . Ghard and Gsoft are defined over disjoint sets
of variables. b ∈ R+

0 is the cost bound. A state is a com-
plete assignment to V . Facts are variable-value pairs v = d.
We represent partial variable assignments with sets of facts.
Each action a ∈ A has a precondition prea and an effect
eff a, both partial assignments to V . An action a is appli-
cable in a state s if prea ⊆ s. Applying a to s denoted as
s[[a]] results in state s′ where s′(v) = eff a(v) for those v
on which eff a is defined and s′(v) = s(v) otherwise. The
resulting state of an iteratively applicable action sequence π
is denoted by s[[π]]. A plan is an action sequence π whose
summed-up cost is ≤ b and where Ghard ⊆ I[[π]].

Following Eifler et al. (2020a), we do not define a plan
utility overGsoft. Instead,Gsoft is a set of temporal plan pref-
erences (encoded into soft-goal facts (Edelkamp 2006; Baier
and McIlraith 2006)), and the analysis they provide iden-
tifies dependencies between these (plan-space entailments,
see below). The issue we tackle here is the specification of
the temporal plan preferences Gsoft.

Finite Linear Temporal Logic
We use finite Linear Temporal Logic LTLf, an adaption of
LTL to finite traces (Baier and McIlraith 2006; De Giacomo
and Vardi 2013), to represent temporal preferences.

Given a planning task τ , let S be a set of symbols for all
facts in τ and L(S) the set of all first-order formulas over S.

φ ::= ϕ | l | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2

with ϕ ∈ L(S), l ∈ {final,true,false}

LTLf formulas are interpreted over a finite sequence of
states (finite trace) σ = s0s1 · · · sn where each state si is
a first-order interpretation over the symbols in S. We use
the abbreviation σi for si · · · sn. Given a finite trace σ and a
LTLf formula φ we say σ |= φ iff:

• σi |= final iff i = n.
• σi |= true and σi 2 false.
• σi |= ϕ, where ϕ ∈ L(S) iff si |= ϕ.
• σi |= ¬φ iff σi 2 φ.
• σi |= φ ∧ ψ iff σi |= φ and σi |= ψ.
• σi |=©φ iff i < n and σi+1 |= φ

• σi |= φ U ψ iff ∃j : i ≤ j ≤ n such that
σj |= ψ and ∀k : i ≤ k < j : σk |= φ

Additionally, the following standard temporal operators
are used: release: φ R ψ := ¬(¬φ U ¬ψ), always: �φ :=
false R φ, eventually: ♦φ := true U φ, weak until:
φ W ψ := (φ U ψ) ∨ �φ. The size of a LTLf formula
|φ| is defined as the number of subformulas.

Part of our discussion below will draw on Eifler et al.’s
(2020a) definition of plan-space entailment. Let Π be the set
of plans of τ , and φ, ψ two LTLf formulas. The subset of
plans that satisfy φ is denoted by MΠ(φ) := {π | π ∈
Π, π |= φ}. We write τ |= φ ⇒ ψ ifMΠ(φ) ⊆ MΠ(ψ),
and τ |= φ⇔ ψ ifMΠ(φ) =MΠ(ψ).

3 Building Blocks
The two main building blocks of our approach are the gen-
eration of plans and the learning of LTLf formulas. In the
following, we point to related work in this area, while de-
scribing the approaches we decided to use in more detail.

Plan Generation
To provide a set of sample plans Π to the user, we have to
generate multiple plans for the given planning task τ . These
plans ideally should cover different parts of the search space,
exhibiting different possibilities to reach Ghard. Optimality
with respect to plan cost is not a necessity, indeed is undesir-
able as it may exclude interesting plan options. So we want
to allow sub-optimal plans, up to the cost bound b. Never-
theless, a bias to small plan cost can make sense as cheap
plans are generally preferrable.

Given this, we explore four different plan generation tech-
niques. Three of these are variants of top-k planning (TopK)
(Katz et al. 2018; Speck, Mattmüller, and Nebel 2020),
which is adequate as it is specifically designed to provide
multiple plans. The default variant returns the best k plans in
terms of cost. In domains with independent objects (like two
trucks which can move independently) TopK often leads to
plans which are permutations of each other. So as a sec-
ond approach we use top-k planning with an additional fil-
ter, removing plans that are permutations of already found



plans. This leaves us with plans that pairwise have at least
one distinct action (TopKFil). Our third variant is agile di-
verse planning (AgDiv) by (Katz and Sohrabi 2020) which
takes not only plan quality but also solution diversity into ac-
count, and thus is a very natural approach for our purposes. It
uses satisficing planning and iteratively computes new plans
while forbidding all possible reorderings of already given
plans.

As a simple method that actually turns out to work quite
well, we also run a randomized version of hFF (Hoffmann
and Nebel 2001) in greedy best-first search (RNDhFF).
The randomization adds a positive random number to each
heuristic value. As this approach does not guarantee to find
different plans, the plans are filtered for uniqueness in a post-
process.

All of these approaches can be run as an anytime search,
allowing to generate plans until a time limit is reached or a
certain amount of plans is found.

Learning
There is substantial work (Neider and Gavran 2018; Cama-
cho and McIlraith 2019a; Kim et al. 2019) in the area of
learning LTL formulas from sample traces we can build on.
The approach by (Kim et al. 2019) is based on probabilis-
tic Bayesian models. It relies on templates so it cannot learn
arbitrary LTL formulas. The probabilistic model enables ro-
bustness with respect to noise in the input data. In our con-
text, such noise would reflect plans incorrectly annotated by
the user. This could be an interesting consideration for fu-
ture work, but for now we assume that such noise does not
exist (the user either annotates an example plan correctly or
not at all). Therefore, we follow instead other works (Nei-
der and Gavran 2018; Camacho and McIlraith 2019a) that
use SAT encodings to learn a smallest formula identifying
the positive and negative examples perfectly. These do not
rely on templates and can learn arbitrary formulas. In our
implementation we use a modified re-implementation of the
approach by Camacho & McIlraith (2019a).

The input of the learner are two sets of finite traces reflect-
ing the positive and negative examples. The learning is an it-
erative process over the size of the learned formula. In each
step a SAT encoding of all LTLf formulas with the given size
and the input traces is generated. The first satisfiable assign-
ment the SAT-solver can find is then used to reconstruct the
corresponding LTLf formula. If the SAT encoding is unsat-
isfiable the size bound is increased.

Plan Preferences
We focus on commonly used temporal formulas in plan-
ning and model checking. We use those PDDL3 Prefer-
ences (Gerevini et al. 2009) that do not have a numeric ar-
gument. Additionally, we include templates often used in
model checking (Manna and Pnueli 1990; Dwyer, Avrunin,
and Corbett 1999; Menghi et al. 2019). Table 1 lists the for-
mula templates we will consider (for the construction of hid-
den target formulas) in our empirical evaluation. While these
do not exploit the full expressiveness of LTLf, arguably user
preferences tend to be temporally simple (reflected for ex-

ample in the fact that PDDL3 caters for only a small fraction
of LTLf.

meaning formula size

PD
D

L
3

always �a 2
sometimes ♦a 2
at most once �(a→ (aW�¬a)) 8
sometimes before (¬a ∧ ¬b)W(a ∧ ¬b) 10
sometimes after �(a→ ♦b) 5
never �¬a 3
a before b ¬b U a 4
at the same time ♦(a ∧ b) 4
not together �¬(a ∧ b) 5
sequence ♦(a ∧ ♦b) 5
b forbids a ♦(b→ �¬a) 6
response �(a ∧©♦b) 6
persistent response ♦(a ∧©�b) 6
stability ♦�a ∧�(a→ �a) 9

Table 1: LTL templates used to simulate the user.

4 Architecture
We now discuss how to assemble these building blocks into
an architecture for plan preference learning. We first briefly
re-explain the workflow in our approach, highlighting the is-
sues and relevant special cases that can arise. We then briefly
outline our implementation. Recall in what follows that in
our experiments we will assume a hidden target formula,
denoted φt, inside the user’s head.

Workflow: Issues and Special Cases
Step 1: Plan Generation. In the first step we generate a set
Πg of plans for the given planning task, using one of the in-
troduced approaches RNDhFF, TopK, TopKFil or AgDiv.
As φt is hidden, the plan generation cannot be tailored to
generate positive and negative examples for φt. So we sim-
ply consider the first n plans generated. We will experimen-
tally explore the impact of the parameter n.

An important complication is that the learning step re-
quires at least one example from each class, i. e., at least
one positive and at least one negative example. Obviously
this may not be true in the first n plans, in which case one
has to either give up or increase the value of n. An issue
with the latter is that the hidden user preference may actu-
ally be a tautology in the planning task, i. e., may be true (or
false) in all plans. In practice we won’t be able to check that.
Note though that tautological preferences are not meaningful
(they do not distinguish between plans at all). Presumably,
users will typically know enough about the task at hand to
come up with meaningful preferences only. In our experi-
ments, we consider only non-tautological preferences.

Step 2: Plan Annotation. We provide the set of plans Πg

to the user and ask her to annotate the plans with respect to
her hidden target preference φt as positive Πp and negative
Πn examples. Clearly, the number n of plans the user has
to annotate should be as small as possible. We will evaluate
empirically how many plans are necessary to learn φt.



Importantly, in practice, one could interleave plan anno-
tation and formula learning until the user is satisfied with
the result. In our setting here, this corresponds to analyzing
learning performance as a function of n.

Step 3: Learning. Given Πp and Πn, we call the learner
to obtain the set Φl of smallest LTLf formulas perfectly iden-
tifying Πp and Πn. As φt is not known, Φl can not be filtered
further without additional information from the user. Hence
all formulas in Φl are forwarded to the user for inspection.

Observe that the formulas φl ∈ Φl can be related to the
target formula φt in exactly one of the following ways:

(a) we learn the same formula: φl = φt

(b) φl is equivalent to φt: τ |= φl ⇔ φt

(c) φl is an overapproximation of φt: τ |= φl ⇒ φt

(d) φl is an underapproximation of φt: τ |= φt ⇒ φl

(e) no direct relation, i. e., none of (1)–(4) holds.

Case (a) is the ideal case and provides the result the user is
expecting. In the worst case (e), the user is confronted with
a set of formulas not related to what she has in mind at all.

The intermediate cases are more difficult to judge. As for
equivalence (b), this may seem unproblematic, but depend-
ing on how similar φl and φt are, the user may not be able to
recognize the equivalence. In our experiments, we observed
surprising equivalent formulas, that identified subtle depen-
dencies in the planning task. On the positive side though, this
form of dependency identification constitutes an alternative
application of our techniques, as a new form of plan-space
explication in the sense of Eifler et al. (2020a). The plan
annotation and formula learning then used to automatically
find new formulas that relate in particular ways to previously
identified preferences. We illustrate this possible alternative
use of our techniques at the end of the experiments (Sec-
tion 6).

The usefulness of over/under-approximations (c) and (d)
of φt also highly depends on their similarity to φt. A use-
ful result would for example be φl = �a given the target
formula φt = �(a ∨ b), or in general if φl → φt based on
the LTLf semantic regardless of the planning task. In our ex-
periments we often observed that the learning identified in-
stead subtle unexpected dependencies, again suggesting the
abovementioned alternative use in the sense of Eifler et al.
(2020a).

Implementation
For plan generation we used the publicly available imple-
mentations of SymK (Speck, Mattmüller, and Nebel 2020)
for TopK and TopKFil, forbiditerative (Katz and Sohrabi
2020) for AgDiv, and Fast Downward (Helmert 2006) for
RNDhFF. The plan selection for TopKFil is supported by
SymK as an internal filter. We extended the translator of each
planner by the LTLf compilation implementation by (Eifler
et al. 2020b). This is required for our experimental setup as
explained in the next section.

The preferences we consider are LTLf formulas over facts.
To convert plans to lists of fact sets we use VAL (Howey,

Long, and Fox 2004). We discard the static facts (that are al-
ways true, e. g. defining the road connections in transporta-
tion domains).

The implementation we use for LTLf learning is a reim-
plementation of Camacho & McIlraith’s tool (Camacho and
McIlraith 2019a). The original implementation only outputs
one formula of the given size. As we do not have a reason to
prefer one formula over another, we extended the implemen-
tation to provide all formulas of that size: we call the SAT
solver repeatedly, adding a new clause each time to enforce
that previously found formulas are excluded.

5 Experiment Setup
Some words are in order regarding our benchmark design
and other particularities of our experiments setup.

Benchmark Design
The planning instances we consider are based on the
resource-constrained planning instances used by Eifler et
al. (Eifler et al. 2020a). These consist of variants of
Blocksworld, Nomystery, Rovers and TPP. In all domains,
the action-cost budget b is set to 1.5 times the optimal cost
necessary to achieve all hard goals (this setting allows to
achieve some, but not very many, additional temporal soft
goals). The Blocksworld is a version with two hands. No-
mystery is a simple transportation domain over a road-map
graph. In TPP, multiple markets offer different goods, which
need to be bought and transported to a depot. In Rovers, one
has to navigate a road map, take rock/soil samples, and take
pictures of objectives with limited view. From each of these
domains we selected 10 instances with a fixed number of
hard goals (Blocksworld 6, Nomystery 4, Rovers 6 and TPP
4).

To generate hidden target formulas for our experiments,
we used the LTL templates given in Table 1. For each plan-
ning task τ = (V,A, c, I,Ghard, Gsoft, b) we iteratively in-
stantiated each template with random facts from

⋃
a∈A eff a.

For templates up to size 4 we also included extended ver-
sions, by instantiating a or b with a conjunction or disjunc-
tion of two facts. Then, for each candidate formula φ we
checked whether φ is non-tautological: (τ, φ) is added to our
benchmark set only if bothGhard∪{φ} andGhard∪{¬φ} are
solvable. For each task τ , we included at most two formulas
based on the same template. To guaranty termination we skip
a template after at most 30 failed candidate formula checks.
This procedure generated on average 30 formulas per task,
resulting in a benchmark set of 1284 task-formula pairs.

Hypothetical Best-Case for Plan Generation
In practice, plan generation cannot be tailored to the plan-
ning formula φt, as that is hidden in the user’s head. Yet,
intuitively, it is important for the example plans to be bal-
anced: same numbers of positive and negative instances. A
highly imbalanced set of examples can be expected to im-
pede formula learning, as it will fail to clarify the distinction
line between the two classes.

We evaluate this hypothesis here by exploring two differ-
ent setups for plan generation: the realistic application setup



Genapp where plans are generated without knowledge of φt;
vs. the hypothetical idealized setup Genideal where we gener-
ate perfectly balanced example plan sets by enforcing φt and
¬φt each in half of the plan-generation runs. (Kim et al.’s
(2019) experiment setup featured a related construction.)

The idealized setup also serves to shed light on what could
potentially be achieved in future work by advanced methods
trying to incorporate partial information about the user pref-
erence (i. e., what kinds of structures are of interest).

Evaluation with Respect to the Target Formula
In our experiments, to evaluate the quality of the learned for-
mula, our foremost criterion naturally is the degree of direct
relation to the hidden target formula φt, according to the
categories (a)–(e) discussed in Section 4. Note that checking
these relations involves expensive implication tests, identi-
fying entailments in plan space. Our implementation works
as follows. The context of each test is a planning task τ with
hard goals Ghard. Given target formula φt and learned for-
mula φl, we test whether (1) τ |= φl ⇒ φt and (2) τ |=
φt ⇒ φl. Each of these tests is performed through compila-
tion into a modified planning task, namelyGhard∪{φl,¬φt}
for (1) and Ghard ∪ {¬φl, φt} for (2), where LTL hard goals
are encoded through compilation into goal facts. Each test
succeeds iff the corresponding planning task is unsolvable.

All experiments were run on Intel E5-2660 machines run-
ning at 2.20 GHz with a memory limit of 4GB. The example
plan generation and the formula learning had time limits of
30min each. As evaluating φt with respect to φl can be very
time consuming, we used a timeout of 2h for this step. For
Genapp we generated up to 50 example plans, and for Genideal
we generated up to 25 positive and 25 negative examples.

6 Experimental Results
Our evaluation is structured into five parts. The first two
parts evaluate plan generation, in terms of computational
performance, and the balance of the resulting plan sets. The
third part evaluates the quality of the learned formulas rel-
ative to the hidden target formula, as a function of target
formula size, plan generation method, and number n of an-
notated example plans. In the fourth part we give some illus-
trative examples and conclude in the fifth part with a brief
evaluation of the alternative application of our techniques as
a new form of plan-space explication.

Plan Generation: Computational Performance
Figure 1 shows the average number of plans generated over
time. Top-k planning (TopK) clearly produces most plans
fastest, followed by randomized hFF (RNDhFF). Agile di-
verse planning (AgDiv) generates about half of the re-
quested 50 plans within the given time limit. Top-k planning
with permutation filter (TopKFil) is least apt at generating
many example plans; the permutation filtering turns out to
be quite aggressive given the top-k search output, effectively
cutting off plan generation after a few seconds.

Plan Generation: Balance
At least one positive and negative example is necessary for
the learning step. So the first question is in how many of our

100 101 102 103

1
5
10
15
20
25
30
35
40
45
50

time in sec

av
g

#p
la

ns TopK
TopKFil
AgDiv
RNDhFF

Figure 1: Average number of plans generated over time.

1284 benchmark instances (task-formula pairs) this is the
case. The answer is: 205 for TopK, 536 for TopKFil, 659
for AgDiv, and 628 for RNDhFF. The most striking obser-
vation concerns TopK, which generates the largest number
of example plans, yet often yields examples of only one cat-
egory. This is due to its tendency to generate plan permuta-
tions.

In what follows, we consider, for each plan-generation
method, only those benchmark instances where both posi-
tive and negative example plans are generated. The set of
all these benchmark instances (union across plan-generation
methods) is denoted Ip&n. Figure 2 (left) evaluates how bal-
anced the sets of example plans are for each plan-generation
method.

It may seem surprising here at first, given the above, that
TopK generates the most balanced example plan sets within
Ip&n. On closer inspection, this is somewhat due to the
smaller benchmark basis underlying the data for TopK. As
Figure 2 (right) shows, on these 205 benchmark instances
also AgDiv and RNDhFF tend to be more balanced. Overall,
the superior plan generation algorithm in terms of balanced-
ness is TopKFil, which exhibits strong behavior especially
for target formulas relating to reachability (e.g. ♦φ).
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Figure 2: Relative number of negative examples for each
plan-generation method, over all benchmark instances Ip&n

(left), and over only those 205 instances usable with TopK
(right). Plot breadth as a function of y indicates the num-
ber of benchmark instances for which y% of the generated
examples plans are negative.

Quality of Learned Formulas
Figure 3 provides our evaluation of learning quality. Our
main criterion for assessing quality are categories (a)–(e)
relative to the target formula. We say that an instance is
solved if either the target formula or an equivalent formula
is learned.

Consider first the leftmost part of the figure. It provides
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Figure 3: Relative number of instances where the same, an equivalent formula, an over/under-approximation, or no related
formula at all is found. Order of plan-generation approaches for each formula size: TopK, TopKFil, AgDiv, RNDhFF.
Rightmost plot: distribution of number of plans needed, in Genideal setup, to solve an instance , for those instances commonly
solved by TopKFil, RNDhFF, and AgDiv.

data for the realistic plan-generation setup Genapp where the
hidden target formula is not taken into account in plan gen-
eration. To make the complete picture visible, we also in-
clude those cases where learning was not possible as only
positive/negative example plans were generated. For very
small formulas (size 2 and 3), all plan generation approaches
solve a large fraction of those benchmark instances (Ip&n)
where learning could be run. For larger target formulas per-
formance drops sharply though, with less than a quarter of
the benchmark instances being solved.

Comparing across plan-generation methods, up to size 5,
AgDiv is best, closely followed by RNDhFF and TopKFil.
For larger sizes, there is no superior method. This ranking
of plan generation approaches is exactly the ranking accord-
ing to the number of instances in Ip&n (659 AgDiv, 628
RNDhFF, 536 TopKFil, 205 TopK). While TopK tends to
produce highly balanced plan sets (Figure 2), it does not pro-
duce a notably better ratio of high-quality learned formulas.

Turning now to the middle part of Figure 3, we vividly see
that the bottleneck of our approach is the quality of plan gen-
eration. Recall that in Genideal, the plan-generation methods
have access to the target formula and produce perfectly bal-
anced example plan sets. Learned-formula quality increases
dramatically relative to Genapp, with formula sizes 1 and
2 consistently solved perfectly, equivalent formulas learned
frequently even for large formulas, and formulas unrelated
to the target learned almost never. The key question for fu-
ture work is how to alleviate this performance gap between
Genapp and Genideal. We get back to this in the conclusion.

Consider finally the rightmost part of Figure 3, which pro-
vides an evaluation of plan-generation methods in terms of
the number n of example plans needed to solve a bench-
mark instance. To enable a meaningful comparison, we re-
quire commonly solved benchmarks, need to exclude TopK,
and exclude uninteresting instances solved by any method
with n = 1. Given these restrictions, Genapp does not pro-
vide a sufficient basis for a meaningful comparison, so we
consider Genideal instead. Overall RNDhFF performs best.
Its median is never larger than n = 10, and variance is
small. TopKFil and AgDiv in contrast frequently suffer
from high n. We emphasize that these results are important,

as annotating many example plans (larger n) is a burden on
the user.

Illustration: Example Learned Formulas
Let’s consider some examples for illustration, covering the
different possible relations to the target formula.

For simple ordering constraints like the Rovers tar-
get formula ¬have-soil-analysis(r0, w0) U at(r1, w2), of-
ten the exact target formula is learned. For the target for-
mula ♦(in(p1, t1) ∨ at(t1, l5)) in Nomystery, we learned
the smaller equivalent formula ♦in(p1, t1), which is obvi-
ously an underapproximation though equivalence is difficult
to see. In TPP, the underapproximation ♦at(t1,m0) learned
for the target ¬at(t0,m0) U at(t1,m0) should also be rec-
ognizable.

One bad case is the target formula �¬(holding(b2, h0) ∨
holding(b0, h1)), restricting the hand usage for two blocks
in Blocksworld. On this benchmark instance, we learned the
overapproximation ¬holding(b2, h0) U holding(b0, h0). Al-
though the formulas partially contain the same facts, it is
quite difficult to determine how they relate to each other.

Alternative Use: Plan Space Explication
While learned formulas not identical to the target formula
may not be easily recognizable to the user, as mentioned be-
fore they can also serve for plan space explication in the
sense of Eifler et al. (2020a). In this alternative applica-
tion setting, the task is not to learn a hidden target formula,
but instead to automatically identify new formulas entailing,
or entailed by, a known (previously already specified) plan
preference φt. This may elucidate non-obvious properties of
plan space.

For illustration, in TPP for target formula ♦at(t1,m1)
we learn the underapproximation ♦¬at(t1, d), and hence
uncover the entailment τ |= ♦¬at(t1, d) ⇒ ♦at(t1,m1)
which shows that, if truck t1 leaves depot d, then it
must visit market m1. In Blocksworld for target for-
mula ♦(ontable(b4) ∧ ontable(b1)) we learn the over-
approximation clear(b3) U ontable(b1), and uncover the
entailment τ ′ |= ♦(ontable(b4) ∧ ontable(b1)) ⇒
clear(b3) U ontable(b1) which shows that, if b1 and b4 are



both on the table at some point, then b3 must stay clear until
b1 is on the table.

7 Conclusion
We have assembled technology learning user preferences
from annotated plan examples. The results are encouraging
and constitute a first step towards the deeper investigation of
this form of preference elicitation in planning.

The key question for future work is how to alleviate the
large performance gap between practical plan generation
(without access to the hidden target formula) and idealized
plan generation (with such access). Presumably, addressing
this requires some information about the target formula, e. g.
what kinds of objects or predicates are of interest, which
formula templates/temporal structures are of interest, etc.
Given such information, it may be possible to devise plan-
diversity measures tailored to produce balanced example
sets.
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