Plan Verbalisation for Robots Acting in Dynamic Environments

Konstantinos Gavriilidis '>*, Yaniel Carreno '**, Andrea Munafo °, Wei Pang ',
Ronald P. A. Petrick ">, Helen Hastie '

! Edinburgh Centre for Robotics, Edinburgh, UK
2 Department of Computer Science, Heriot-Watt University, Edinburgh, UK
3 Seebyte Ltd, 30 Queensferry Rd, Edinburgh, UK
{kg47, Y.Carreno, W.Pang, R.Petrick, H.Hastie} @hw.ac.uk
andrea.munafo @seebyte.com

Abstract

Automated planning provides the tools for intelligent be-
haviours in robotic platforms deployed in real-world environ-
ments. The complexity of these domains requires planning
models that support the system’s dynamics. This results in Al
planning approaches often generating plans where the reason-
ing around the solution remains obscure for the operator/user.
This lack of transparency can reduce trust, results in frequent
interventions, and ultimately represents a barrier to adopting
autonomous systems. Explanations of behaviour in an easy-
to-understand manner, such as in natural language, can help
the user comprehend the reasoning behind autonomous ac-
tions and help build an accurate mental model. This paper
presents an approach for a type of explanation, namely plan
verbalisation, that considers the properties of the planning
model and describes the system behaviour during plan execu-
tion, including replanning and plan repair. We use natural lan-
guage techniques to support the disambiguation of the robot
decision-making process, considering the planning model en-
capsulated using the Planning Domain Definition Language
(PDDL). The system is evaluated using an Autonomous Un-
derwater Vehicle (AUV) inspection use case.

1 Motivation and Introduction

Robotic platforms are frequently deployed to carry out com-
plex tasks such as exploration, maintenance, and manufac-
turing to improve mission quality in hazardous conditions.
Critical applications in different areas such as nuclear (cf.
rainhub.org.uk), offshore energy (cf. orcahub.org),
and renewables (cf. mimreesystem.co.uk) can enter ex-
treme environments and undertake high-risk missions where
an operator can supervise the activity from a safe dis-
tance. Automated planning generates planning solutions that
achieve tasks with different levels of complexity and re-
quirements (e.g., heterogeneous robots, collaborative ac-
tions, coordinated actions, etc.), minimising their costs.
Planning solvers can generate solutions in short periods,
and, if necessary, planners can re-adjust the behaviour of
systems in case of unexpected circumstances.

However, with complex plans and highly dynamic envi-
ronments, it is not always clear how a system may act in

*Authors have contributed equally in this work.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a given situation or why it behaves in a certain way. This
lack of transparency is a recognised problem going forward
(cf. the forthcoming IEEE P7001 standard on transparency)
and can result in a lack of confidence, trust and ultimately
prevent adoption. Furthermore, as systems are adopted into
the field, there is a need for an audit trail of actions and the
planner decisions regarding the action sequence.

Currently, there is a growing interest in explainable plan-
ning (Chakraborti, Sreedharan, and Kambhampati 2020),
where agents can explain their decisions to operators. This
approach can increase user trust towards robots and find the
right balance between human intervention and autonomy.
However, instead of directly making the agents explainable,
adding a wrapper application that represents concepts such
as planning either using visualisation or natural language
(NL) is possible. Our interest lies in natural language ex-
planations and their ability to personalise outputs depending
on the preferred amount of knowledge and expertise of the
user (Garcia et al. 2018). We are interested in verbalising the
planning aspects of robots to help users understand discrep-
ancies in terms of expected and actual robot behaviour.

This paper contributes to explainable planning with natu-
ral language explanations with the provision of the follow-
ing: (i) introduction of an Autonomous Underwater Vehicle
(AUV) domain; (ii) planning explanation considering ver-
balisation of the action progress during plan execution; and
(iii) clarification of action failure and replanning using natu-
ral language. Our approach provides tools to verbalise mis-
sions initial state, goal state, plan solution and unexpected
outcomes, including replanning or plan repair.

The rest of this paper is organised as follows. We begin
by discussing relevant work that relates automated planning
with natural language. We then briefly describe the use case
for our implementation and provide technical details of our
approach to plan verbalisation and the planning system. Fi-
nally, we provide an example of our implementation and
conclude with the findings of our work and future directions.

2 Related Work

Natural language has long been recognised as an effective
medium to convey information about planning aspects, and
objective completion to users (Sohrabi, Baier, and Mcllraith
2011; Fox, Long, and Magazzeni 2017; Robb et al. 2018).

It can connect the dots between mission data and display
content in an informative manner to reduce uncertainty. To
retrieve that information, explanation interfaces that relate
planning data to meaningful content are needed to elaborate
on the processes and decisions behind a choice of plan (Fox,
Long, and Magazzeni 2017). We retrieve data during action
execution and plan failures to generate explanations about
mission outcomes with our approach.

Other works that focus on the personalisation of explain-
able planning (Chakraborti, Sreedharan, and Kambhampati
2020) outline the users that would potentially be interested
in planning or decision-making explanations. Authors de-
scribe the implemented parts of autonomous agents that re-
quire explainability (e.g., plan or policy clarifications). The
critical point of this work is that a certain level of person-
alisation in natural language outputs is necessary to prevent
the mental overload of users or loss of interest. To refine the
user experience in our implementation, we limit the number
of technical details in outputs and facilitate mission inspec-
tions by users with low planning expertise.

Prior work on plan verbalisation has also focused on
knowledge acquisition and explanation generation (Sridha-
ran and Meadows 2019), or the effect of explanations on user
trust during human-robot teaming (Hastie, Liu, and Patron
2017; Nikolaidis et al. 2018). We focus on action explana-
tions to provide clarity, and we only offer unilateral answers
from the agent. Furthermore, there have been many applica-
tions that verbalise different types of content, such as robot
localisation (Rosenthal, Selvaraj, and Veloso 2016; Moon,
Magazzeni, and Cashmore 2019), sensor data (Hastie, Liu,
and Patron 2016), or action failures (Thielstrom et al. 2020).
Compared to these approaches, we aim to verify action com-
pletion when cancellation occurs. We present the error and
the new set of actions to be executed with replanning.

Explanation models can also be used as wrapper services
to facilitate user awareness without disrupting the design of
autonomous systems (Adadi and Berrada 2018). A model-
agnostic application that follows this technique uses an inter-
face that contains a set of constrained questions, which leads
to planning indications as a form of answer (Cashmore et al.
2019). Our model also follows this example and is applied
to the planning system as an explanation layer.

A key tool in our approach is the use of ontologies, which
have a long history in planning (McCluskey and Cresswell
2005; Bouillet et al. 2007; Cioffi and Thompson 2007). Pre-
vious work on knowledge representation has examined the
use of sensor data from plan execution along with a knowl-
edge base to relate that data to symbolic concepts (Tenorth
and Beetz 2009). Additional work fixes differences between
a planning domain and an ontology (McNeill and Bundy
2007) or extends the functionality of a planner by intro-
ducing new information that leads to the formulation of
new goals (Babli, Onaindia, and Marzal 2019). Ontologies
can also be utilised to create a Natural Language Gener-
ation system that derives content from them (Galanis and
Androutsopoulos 2007). Literature shows approaches that
either utilised abstract ontologies with concept and axiom
definitions (TBox) or knowledge bases that combine these
concepts/axioms with instances and concept/role assertions

Figure 1: Illustration of the simulation (left) and real (right)
domain used to implement AUV exploration missions.

(ABox) (Miguelanez et al. 2010). Our work combines plan-
ning with TBox ontologies to efficiently describe the current
state of a robot and to indicate whether it is capable of per-
forming an action.

3 Domain and Problem Definition

As a running example throughout the paper, we consider an
AUV with electrical manipulators, stereo cameras and sonar,
which is used to implement multiple tasks in the underwa-
ter domain such as: (i) seabed mapping, (ii) structure recon-
struction, (iii) inspection of valves and modification of their
handles, and (iv) rock inspection to assess the soil quality for
environmental purposes. Here, we present an updated ver-
sion of the underwater domain used in (Carreno et al. 2020).
Figure 1 shows the simulated (left) and real (right) scenario
associated to our domain auv_inspection. The Simula-
tion Scenario and the Real Scenario share similar properties.
Therefore, we can assume we have a single model that re-
sponds to the auv_inspection domain. We adopt the Plan-
ning Domain Definition Language (PDDL) with temporal
notions (Fox and Long 2003) to describe our domain and
problem’.

Domain Description (Simulation Scenario): An offshore
scenario (Figure 1, left) includes a set of blowout preventers
(BOPs), structures with a valve attached that can be open or
closed (the valve state is known at planning time). In addi-
tion, the environment presents multiple wind turbines, which
require regular inspection of their bases. The structure’s co-
ordinates are known, and the AUV does not have any initial
knowledge about the seabed characteristics. This scenario
allows the implementation of missions that cover all types
of tasks described in the auv_inspection domain.

Domain Description (Real Scenario): A real underwater
scenario (Figure 1, right) with two structures was built at
Heriot-Watt University. The AUV knows the structures’ po-
sitions but lacks knowledge about the remaining features
that define the environment (e.g., a structure’s shapes, floor
irregularities, obstacles, etc.). This scenario is restricted to
missions associated with structure mapping and exploration.

Our domain contains eight temporal actions. The
navigation action is used for the AUV to navigate the

In https://github.com/konsgavriil/keps-auv-inspection.git, we
present the full domain and problem.

environment, taking as a reference an initial (?wpi) and fi-
nal (?wpf) point. Implementing this action allows the in-
spection of the environment and the acquisition of data re-
garding unknown features. The map action is used to im-
plement point-to-point structure mapping using specialised
sensors and algorithms. The manipulation action manip-
ulates the valve using an actuator, in our case, a robotics
arm. The rock-inspection action is a sensing action
that evaluates the soil quality by analysing rocks. Other do-
main durative actions that share the same parameters (?r -
robot and ?wp - point) are communicate, recharge,
hardware-repair, and recover. The communicate ac-
tion is required to notify the base about plan implementation
updates and failure. The recharge action plays a funda-
mental role in maintaining the robot under optimal energy
levels to execute all mission goals. The hardware-repair
action is required to implement regular checks in the hard-
ware to avoid total failures. The action is executed when the
AUV’s battery goes under a particular threshold, defined as
attending to the AUV’s characteristics. The communicate,
the recharge, and the hardware-repair actions require
the AUV to be positioned at a point that holds the pred-
icate (surfpoint_at ?r - robot ?wp - point). Fi-
nally, the recover action makes the robot return to a safe
position (defined by the operator or domain designer) at the
end of the mission.

In our domain, we define a set of properties associated
with the AUV that affect the actions the robot can imple-
ment at each time step. For instance, the domain predicates
define a set of properties associated with the robot’s ca-
pabilities such as slam_equipped, rock._analyser, and
arm_equipped. The slam_equipped property allows the
system to implement the mapping of a structure. This predi-
cate represents a precondition to implement the map action.
The rock_analyser property indicates that the AUV can
make an evaluation of a rock. The arm_equipped property
is a precondition for implementing the manipulation ac-
tion as the robot requires this actuator to turn the valve. An-
other set of AUV properties and environment features are
introduced as :functions. For the environment, an ex-
ample is the (distance ?wpi ?wpf - point) function,
which describes the distance between two different points.
Instances of this function introduce knowledge regarding the
position of all mission points concerning the AUV’s location
at any time. For the AUV, examples enclose properties such
asthe battery_level, current energy and robot’s speed.

Our problem defines a robot called auv and a set of
points (e.g., wp0, wpl, etc.) that describe points of inter-
est in the environment. The problem’s initial state (:init)
defines the auv capabilities by introducing instances that
describe the AUV’s sensory system and actuators; the
connected points in the environment (e.g., (connected
wpl0 wpll)), which represent a precondition to imple-
ment the navigation between points; AUV battery proper-
ties such as its maximum, minimum and current voltage
level (e.g., (= (battery_level auv) 15.6)); the dis-
tance between points (e.g., (= (distance wpl0 wpll)
0.6)); amongst other properties. The problem also de-
fines the mission goals. The Simulation Scenario allows

Time: (Action Name) [Duration]
0.000: (navigation auv wpO wplO) [10.000]
10.002: (map auv slam wplO wpll) [7.500]
17.503: (map auv slam wpll wpl2) [7.500]
25.004: (map auv slam wpl2 wpl3) [7.500]
32.505: (map auv slam wpl3 wpl4) [7.500]
40.006: (map auv slam wpl4 wpl5) [7.500]
47.507: (map auv slam wpl5 wpl6) [7.500]
55.008: (map auv slam wplé6 wplO) [7.500]
62.509: (navigation auv wplO wpO) [10.000]
72.510: (navigation auv wpO wp27) [5.000]
77.511: (navigation auv wp27 wp26) [3.000]
80.512: (rock—-inspection auv wp26 rs) [4.000]
84.513: (navigation auv wp26 wp25) [3.000]
87.514: (manipulation auv wp25 arm) [5.000]
92.515: (navigation auv wp25 wp20) [2.000]
94.516: (recover auv wp20) [1.000]

Figure 2: Temporal plan solution for the inspection domain.

(b)

Figure 3: (a) shows the map of a BOP by implementing the
explored goals in the plan; (b) the seabed map around the
BOP structure after implementing the exploration goals.

the implementation of all goals (e.g., point mapped wpl0,
recovered wp20, etc.) defined in the problem. However,
for the real scenario, goals (valve_turned wp25) and
(rock.collected wp26) are removed. Instances of goal
(point_mapped ?wp - point) describe a circular path
around a structure that requires mapping.

Figure 2 shows an optimal plan solution for the exam-
ple domain and problem (obtained with the OPTIC (Benton,
Coles, and Coles 2012) planner). The implementation of the
navigation actions in the plan allows the inspection and map-
ping of a structure while acquiring other features of the un-
derwater environment in the area. Figure 3 shows the real
implementation of the plan actions (actions 2-8) regarding
mapping the structure. Upon closer examination, the plan
solution does not appear straightforward to understand for
non-planning experts. For instance, the reason the AUV im-
plements a set of actions with the same duration in a partic-
ular sequence can be challenging to comprehend for planner
users. The reasoning behind the planning solution (using the
format in Figure 2) requires users to understand PDDL se-
mantics and the domain specifics. Therefore, additional tools
are required to present planning solutions in a more friendly
manner that allow users to have more detailed information
about the AUV behaviours.

Mission Interface |
Mission
Requirements \ y \
L B) Vs N
(| Ontology |
Validation + . _Loader /
Plan N\ N
Solution Plan Plan . A
. i e AN
Plan Validator | Solution \ State
— Proposition -+ ‘-\ Reader ,s‘
\ AN 4
p P :*:Z N
World / N
P Plan / Surface |
/ N s ati \ Realiser /
World World Verbalisation \\‘ ”/,
\ Model Y, Properties Planning Verbaliser
L _

Figure 4: Pipeline architecture for plan verbalisation. The
Planning Verbaliser shows the workflow for NL generation.

4 System Overview: Plan Verbaliser

Our system has the primary goal of verbalising planning
structures and decisions during plan execution in dynamic
environments. This includes all key elements of the plan-
ning cycle: plan generation, execution, monitoring and re-
planning. Given a description of the problem and the initial
plan, we summarise plan execution by presenting the initial
and goal states and the action steps in natural language. We
track actions during execution and check whether they have
been achieved or cancelled due to errors. In case of errors,
we check which action has failed, and justify the cause by
monitoring the process in charge of identifying mission fail-
ures. We use an underwater domain to highlight the func-
tionality of our approach. However, both the ontology and
verbaliser are scalable to other applications as a goal is to
build a domain-independent solution.

The problem and initial plan explanation system is com-
prised of the following parts:

State Reader parses a PDDL problem, a plan and validation
information about the mission and actions.

OWL Ontology is an OWL representation (McGuinness,
Van Harmelen et al. 2004) of the planning domain, con-
taining the same domain logic by replacing PDDL elements
(types, actions and predicates/functions) with OWL items
(entities, object properties and data properties). Upon any
state updates, a reasoner can be used to infer facts about mis-
sion outcomes and derive more content for our explanations.

Ontology Loader loads the OWL ontology and interacts
with the StateReader. Once a problem is retrieved and all
mission elements are defined, the loader creates new entities
according to the initial state. Then, after each action step, it
updates all entity states of the ontology.

Surface Realiser contains a set of methods for generat-
ing the final verbalisations. The methods include the Sim-
pleNLG package (Gatt and Reiter 2009) to apply syntactic
corrections and tense modifications.

The usual workflow (see Figure 4) is that the validation
step retrieves the mission interface artefacts, checks if the

plan solves the problem and produces the predicate states
per action step. Next, the StateReader retrieves the PDDL
documents and parses them to detect entities and their states
during the initial state, the goal state and after each plan step.
Concurrently, an OWL ontology we have manually created
is loaded with the OWLReady?2 package (Lamy 2017) in the
OntologyLoader module. As a result, the entities and their
states are initialised in the ontology as individuals and upon
any change that occurs after each action, the ontology is also
updated. Currently, the ontology is not used to derive con-
tent for the verbalisation, since it could not directly access
the predicates during plan execution; we are addressing this
problem as future work. Finally, the static content provided
by the StateReader is verbalised using the SurfaceRealiser.
The initial plan verbalisation contains information regarding
the world initial state (e.g., auv is equipped with a sonar
sensor, auv manipulates a valve at wp25., etc.).

Focusing on a specific action from the domain presented
in Section 3, we now demonstrate how our system works by
describing the steps for explaining a navigation action. As
an example, we have a robot called auv, which is at an ini-
tial location wp0 and is available to undertake any task. The
StateReader extracts the initial state of auv, strips it of any
characters that are not needed and keeps only the identifier
and the parameters (i.e. at auv wp0; available auv).
Before the state is verbalised, the OntologyLoader retrieves
this information and updates the ontology. In order to ver-
balise each action, our system confirms that the robot is able
to perform the task with the use of Class Constraints that we
have defined in the ontology. For example, a robot is capable
of performing a navigation action only if it inherits the Nav-
igationRobot class. To allocate this property to a robot, we
run the HermiT reasoner, considering its capability to reclas-
sify individuals based on allocated object properties (Glimm
et al. 2014), and find out if that is the case. The reasoner will
classify auv as a NavigationRobot only if it is located at the
correct location and it is available. Using this methodology,
we can include the action preconditions and effects during
plan verbalisation by representing these changes in the on-
tology.

Action Explanations Once the user has been briefed about
the problem and plan solution, plan execution commences
and action explanations are generated. Our interest in ac-
tion implementation focuses on three elements: (i) action
initialisation, (ii) action feedback, and (iii) action updates.
An example of the inputs and their verbalisation for action
explanations are shown in Table 1. From the action initial-
isation, we obtain information regarding action parameters,
starting time and its duration. The action feedback provides
information about action completion (e.g., action achieved,
action cancelled, etc.). The action id is used to identify the
parameters and name of the action of interest. The action up-
dates provide data associated with the most recent action, the
System Framework embedded in our robot, called for execu-
tion. For instance, in Table 1, the Action Interface (A-Int) for
navigation, Navigation A-Int, provides knowledge regarding
the interface connecting with robot controllers and low-level
algorithms to solve the action in the plan. We accumulate

0.000: navigation (auv wp0O wplO) [10.000]

Action Initialisation:

Components To Extract:

action id: 1

name: navigation

parameters: (auv wp0O wpl0)

dispatch time: 0.000

duration: 10.000

Verbalisation: auv has started moving from wpO0 to wp10.
The action started at 0 . 000 sec. with duration 10.000 sec.

Action Feedback:

Components to Extract:

action id: 1

action status: i.e., enabled or achieved
Verbalisation: Auv is now located at wp10.

Action Updates:

Components to Extract:

action interface: i.e., Navigation A-Int., Map A-Int., etc.
Verbalisation: Latest update received from Navigation A-Int.

Table 1: Verbalisation for navigation action.

this information and verbalise it using the Natural Language
Generation (NLG) system mentioned in this section.

Explanations for Plan Failure and Replanning Verbali-
sation of plan failures and replanning requires structured
data from the system responsible for failure detection and
planning state evaluation (see Section 5). Specifically, we
retrieve a notification type describing the nature of the er-
ror (e.g., hardware, battery, localisation, etc.), a risk level
that informs how much the error compromises the mission
(e.g., high, standard, and low), and specifics that provide in-
formation regarding error types. For instance, the specifics
for the notification type hardware can detail the part of the
hardware affected or the notification reason (e.g., thrusters,
sensors, water leak, etc.). The Planning Verbaliser retrieves
these messages to express plan failure and mission replan-
ning/repair characteristics using NL. The predefined struc-
ture of error outputs facilitated a template-based approach
that can be used across different domains.

5 System Overview: Mission Planning

This section provides an overview of the main elements of
the Planning System, which integrates with the Planning
Verbaliser to offer a verbal explanation of plan solutions
during plan execution. This system allows the description
of plan implementation in a dynamic environment consid-
ering the plan generation, execution, monitoring, replanning
cycle. Therefore, users can have updated information regard-
ing action execution, action implementation failures, replan-
ning, and variations in the mission goal set.

Our Goal-Based Mission Planning System (Carreno et al.
2021) integrates the Situational Evaluation and Awareness
(SEA) and Online Planning components. This system com-
bines planning, knowledge representation and decision mak-

Algorithm 1: Mission Planning

Input: MR: Global Mission Requirements.
Input: ZMR: Intermediate Mission Requirements.
Input: v: Current Knowledge.

Output: MC: Mission Knowledge.

Qutput: FU: Failure Update.

1 begin

2 1 < ExtractGlobalMGoals(M7R)

3 IMR +— MR

4 while not i < () do

5 P < GenerateProblem(ZMR)
6 II; < GeneratePlan(P)

7 F;i_1.CancelCurrentPlan()

8 JF;.DispatchPlan(11;)

9 p-CheckSEA(ZMR,)

10 if p Failed then

11 1.UpdateGoals(ZMR,)

12 MK . UpdateKnowledge(ZMR,)
13 FU.CheckFailureType(p)

14 return (M, FU)

15 else if 7 < isAchieved then

16 | i 0

ing to achieve high-level mission goals, while maintaining
mission survivability and improving robustness. SEA acts
as a bridge between high-level planning and low-level mis-
sion execution systems. This component supports a dynamic
evaluation of the state to provide a goal completion assess-
ment for local recovery and global missions using the Online
Planning system. The Mission Planning framework offers a
connection with low-level algorithms that support the SEA
decision-making process when it evaluates possible failures
and proposes alternative solutions to the planning system
to deal with the dynamics of the environment. The Mission
Planning framework is vital because it enables users to have
updated knowledge regarding plan execution, including no-
tifications about mission failure (causes) while keeping a
record of the completed and uncompleted goals. In addition,
the alternative solutions proposed by the SEA component
to overcome failures enhance plan survivability and quality.
SEA encapsulates a library with failure types, which extends
the system ontology. The library is created using past experi-
ence regarding anomaly and fault detection for the different
domains (e.g., underwater, aerial, and terrestrial).
Algorithm 1 shows the Mission Planning process and its
interaction with the Run-Time Plan Verbaliser. The system
extracts the mission goals (line 2) and initialises the inter-
mediate mission requirements (ZMR) with the initial state
defined in the mission requirements (M7R) (line 3). The on-
line planning algorithm is active until all mission goals are
completed (line 4). It takes the current knowledge to gener-
ate the planning problem (line 5), which is used to obtain
a plan solution (line 6). The algorithm cancels any plan in
execution (line 7) before dispatch the new plan generated
(line 8). The method keeps checking the updates from SEA
(line 9) during the whole mission. If SEA notifies substan-

Mission Interface World
Mission T World
Requirements Properties

(Planning Interface / Intermediate Failures
§ — Mission Ontology

- TN N Requirements —’_\
\ Planning { & Knowledge N\

|\(Problem

\ Knowledge —» L and
, J\Generation/ | \ajidation A | prota)
\ - Current Mission
~ Knowledge , e
\ . J
e 7 ~ | Processed
Execution Interface | Action Dispatch N Data
i e) 7/ Plan
Y. o y o | Execution |
. 4 . /Sensing N p '\
/ / Information Cgr;nmands
k . ;)

Run-Time Plan Verbaliser ’ ‘ Robot Interface

Robotic Platform

Figure 5: High-level system architecture that combines On-
line Planning, SEA and Plan Verbaliser components.

tial changes and gives the advice of replanning (line 10), the
set of goals ¢ is updated (line 11), removing the global mis-
sion goals already implemented. Then the mission knowl-
edge (MK) (line 12) is updated to be used by SEA for plan
surveillance. Then the system sends an update regarding the
replanning process to the verbaliser (line 13), which is used
to describe changes in the original plan to the users. This
update contains the type of failure (i.e., localisation failure,
battery level, etc.), the failure’s risk level (i.e., high, standard
and low), and the new goals introduced in the mission to re-
cover the task from the loss before continuing with the exe-
cution. The system returns the actual M/C and the informa-
tion regarding failure update (FUf) (line 14), which consider
the failure types defined for the underwater domain. On the
contrary, if any notification is provided, the system checks
when the whole plan is achieved and stops (line 15-16).

Combining the Mission Planning framework and the Run-
Time Plan Verbaliser allows the users to clearly understand
plan execution in a dynamic environment. This includes the
explanation of the reasons for replanning during mission im-
plementation as a consequence of failures. In addition, the
verbaliser acts as a bridge to provide information about the
addition of new mission goals associated with recovering the
robot from failure situations. This is key to maintaining sit-
uation awareness of the user and building a mental model of
what the system would do in failure scenarios.

6 Combining Planning and Verbalisation

We now define the main elements in the architecture that
connect the mission planning and verbalisation process. We
introduce a small example that illustrates the steps in the
entire pipeline.

System Architecture

Figure 5 shows the system architecture that contains five
modules. The elements in this architecture are an extension
to the system in Figure 4. However, here we focus on the
system dynamic concept, which expands the verbalisation

process to more dynamic and realistic solutions. We deploy
the proposed framework on a BlueROV2 (see Figure 1).
Our BlueROV2 is a full ROS-enabled (Quigley et al. 2009)
system. Our planning and verbalisation architecture extends
ROSPIan (Cashmore et al. 2015).

The Mission Interface includes the PDDL domain and
problem. The Planning Interface is in charge of generat-
ing a solvable plan using all the available knowledge at the
planning time. The plan is parsed and dispatch to the Exe-
cution Interface. SEA introduces the Intermediate Mission
Requirements component ZMR extending the initial Mis-
sion Requirements MR when notifications of failures or
substantial changes occur during the plan implementation.
SEA receives feedback for the Online Planning and Plan Ex-
ecution to define the propositions to change and goals to add
or remove. Besides, SEA is connected to the World to deter-
mine the possible types of failures associated with the envi-
ronment. SEA can command the Online Planning to cancel
the actual plan execution, acknowledging failures for pro-
cessing the data arriving from the Execution Interface. The
Execution Interface takes the dispatched action by the Plan-
ning Interface and translates its AUV action commands. The
interface acts as a bridge between real data acquisition and
SEA, helping determine the quality of plan implementation
and identifying failure sources. This interface embeds low-
level algorithms to support the evaluation of the plan imple-
mentation quality. The Robot Interface includes the robotic
platforms in the mission. Finally, the Plan Verbaliser con-
nects with the Online Planning and SEA components to ver-
balise the implementation of the current plan. This frame-
work provides information to the user about mission fail-
ures, including reasons and future behaviours of the robotic
platform to maintain the system’s survivability.

System Workflow: Example

This example illustrates the data flow when implementing
a mission using the Goal-Based Mission Planner and the
Planning Verbaliser. Considering the PDDL domain and
problem in Section 3, our mission goals are: turn a valve
(valve_-turned wp25) and recover the auv at a safe posi-
tion (recovered wp20). The Online Planning system takes
the Mission Requirements and implements an initial plan
that navigates the auv from the initial position at wp0 to
wp25 to manipulate the valve, then the auv should navi-
gate from wp25 to a safe position marked at point wp20. The
hardware needs to be stable to implement these goals. This is
defined using the predicate (hardware_stable auv), de-
fined in the initial state, which has to be true to implement
the manipulation or the recovery action. The first action in
the plan (navigate auv wp0O wp25) is dispatched for ex-
ecution. The Plan Verbaliser receives the notification of the
action in execution, and it verbalises:

e AUV is moving from point0 to point25.

The subsequent information the verbaliser provides is asso-
ciated with successful or unsuccessful action implementa-
tion. Supposing the action is executed successfully, the Plan
Verbaliser receives updated state information from the On-
line Planning System, which is verbalised as follows: AUV

is now located at point25. Then the next action is dispatched
for execution (manipulation auv wp25 arm). The ver-
baliser receives that information and notifies the user:

* AUV is manipulating a valve at point25.

Suppose during the implementation of this action, the SEA
component receives a notification from a low-level algo-
rithm notifying of a hardware issue affecting the system.
SEA evaluates the failure characteristics advising the On-
line Planning System to cancel the current plan and gen-
erate a new plan that makes the system recover from the
hardware issue before continuing with the goal implemen-
tation. SEA makes updates in the initial knowledge remov-
ing the hardware_stable auv proposition from the initial
state. The Online Planner cancels the plan and takes the cur-
rent state knowledge to generate a new plan that forces the
system to perform a hardware repair. The Plan Verbaliser
receives the notification the action (manipulation auv
wp25 arm) was cancelled, and it enquires the SEA frame-
work for additional information. SEA provides a report re-
garding the failure type (hardware), risk level (high), and ad-
ditional specifications (water leak). This intelligence is used
to provide further clarification to the user concerning the rea-
sons for plan alterations: first,

* Manipulation has been cancelled, and second,
* A water leak issue detected with the high-risk level.

After the new plan is generated and the first ac-
tion is dispatched, the Verbaliser starts the description
of the latest action that navigates the auv to be re-
paired. After the hardware-repair action, the proposition
(hardware_stable auv) is reestablished, and the plan-
ning system can deal with a solution to solve the uncom-
pleted goals. At the same time, the verbaliser maintains the
communication with the user, the Online Planner and SEA.

7 Planning and Verbalisation: Mission

In this section, we present a run-time planning solution for
the plan in Figure 2. This run-time planning example eval-
uates the potentialities of dynamic re-planning when un-
expected situations (i.e. substantial changes in the initial
model) in the original plan occur that force the system to re-
plan for specific (new) initial conditions. Using this knowl-
edge, the verbaliser can provide truthful information to users
by verbalising the plan execution and deviations.

Table 2 shows the plan execution when the original plan is
affected by unexpected changes that make the initial solution
unsolvable. Therefore, the system experiences plan devia-
tions. The AUV starts the performance of the original plan.
Supposing the AUV losses track of the environment features
and hence its localisation. The low-level mapping algorithm
creates multiple maps of the same structure. SEA receives a
notification the AUV is not localised correctly concerning
the structure when implementing action (map auv slam
wpl3 wpl4). The Mission Planning strategy receives feed-
back from the SEA component notifying the failure and
proposing a replanning that includes new goals with high
priority to localise the AUV in the initial map before imple-
menting the uncompleted original goals. The Run-Time Plan

Run-Time Plan (1) Description

(navigation auv wp0O wpl0) Navigate to wplO

(map auv slam wplO wpll) Create map wplO towpll
(map auv slam wpll wpl2) Create map wpll to wpl2
(map auv slam wpl2 wpl3) Create map wpl2 to wpl3
(map auv slam wpl3 wpl4) Create map wpl3towpl4

SEA Notification
Run-Time Plan (2)

AUYV Localisation Issue

Description

(map auv slam wpra wprl) Localise auv
(map auv slam wprl wpr2) Localise auv
(map auv slam wpr2 wpr3) Localise auv

SEA Notification AUV Localised
Run-Time Plan (3) Description

map auv slam wpra wpl4) Create map wpra to wpl4
map auv slam wpl4d wpl5) Create map wpl4 to wpl5
map auv slam wpl5 wpl6) Create map wpl5 towpl6
map auv slam wpl6 wplO) Create map wpl6 towplO
navigation auv wplO wpO) Navigate to wpO

navigation auv wp0 wp27) Navigateto wp27
AUV Hardware Issue
Description

(
(
(
(
(
(

SEA Notification
Run-Time Plan (4)

navigation auv wpra wps) Navigate to surface
communicate auv wps) Communicate with base
hardware-repair auv wps) Repair hardware
navigation auv wps wp27) Navigate to wp27
navigation auv wp27 wp26) Navigate to wp26
inspect-rock auv wp26) Inspect rock at wp26
navigation auv wp26 wp25) Navigate to wp25
manipulate auv wp25) Manipulate valve at wp25
navigation auv wp25 wp20) Navigate to wp20
recover auv wp20) Recover auv at wp20

(
(
(
(
(
(
(
(
(
(

Table 2: A run-time plan implementation. The original tem-
poral plan and the recovery plans after failures.

(2) makes the robot navigate to a set of points previously
defined by a low-level algorithm (focus in robust relocalisa-
tion) where there is a high probability the AUV manages to
relocalise. SEA identifies the type of failure and reasons for
the alternative plan that enables the robot to recover. During
the execution of the recovery plan, the AUV can relocalise
at anytime. In that case, SEA determines the recovery plan
is completed. The system will then call the original plan’s
uncompleted goals and send these new requirements to the
Online Planner to obtain a plan that solves the remaining
goals. Suppose the AUV completes the recovery plan (in-
termediate), and relocalisation is not achieved. In that case,
the system will ask for new relocalisation points. Run-Time
Plan (3) shows that SEA notifies that the AUV is localised.
Our approach can deal with other types of failures, such as
battery level notifications and hardware issues (e.g., thruster
failures, water leaking, etc.). One example of these situations
is presented in Run-Time Plan (3). SEA notifies that there is
a hardware problem (water leak) that is affecting the AUV.
The system forces the generation of a plan repair that makes

Run-Time P. (1)

Action Status Explanation

TO: AE AUV is moving from point0 to point10.

T1: AA AUV is now located at point10.

TO: AE AUV maps area between point10 and point11.
T1: AA Mapping has been completed.

TO: AE AUV maps area between pointl3 and point14.
T1: CA Mapping was cancelled.

AUV Loc. A localisation error has been detected

with standard risk.

Alternative plan is being devised.
Run-Time P. (2)
Action Status

TO: AE AUV is re-localising.
T1: AA Localisation has been completed.

Issue Detected

Explanation

AUV Localised Localisation completed
AUV has been localised.

Run-Time P. (3)

Action Status Explanation

TO: AE AUV maps area between pointA and point14.
T1: AA Mapping has been completed.

TO: AE AUV is moving from point0 to point27.

T1: CA Navigation to point27 was cancelled.

AUV Hardware A water leak issue has been detected

Issue Detected ~ with high risk level.

Alternative plan is being devised.
Run-Time P. (4)

Action Status Explanation

TO: AE AUV is moving from current point to surface.
T1: AA AUV is located at surface.

TO: AE AUV is communicating at surface.

T1: AA AUV has communicated with C2.

TO: AE AUV is getting repaired at surface.

T1: AA AUV has been repaired.

TO: AE AUV is moving from surface to point27.
T1: AA AUV is now located at point27.

TO: AE AUV is manipulating a valve at point25.
T1: AA AUV has turned the valve.

TO: AE AUV is moving from point25 to point20.
T1: AA AUV is now located at point20.

TO: AE AUV is being recovered at point20.

T1: AA AUV is recovered.

Table 3: Verbalisation for a run-time planning solution. Sta-
tus provides information to recognise if the action is enabled
(AE) achieved (AA) or cancelled (CA). TO and T1 represent
the action start and end times.

the AUV navigate to the surface, communicate the problem,
and implement the repair before executing the uncompleted
actions in the plan. Run-Time Plan (4) shows the sequence of
actions the AUV implements to deal with this situation. No-

tice, the system advises the online planning module to im-
plement a plan repair that forces the robot to repair the hard-
ware. SEA proposes an update of the current knowledge that
removes the proposition associated with the hardware state
(hardware_stable ?r - robot) considering the hard-
ware issues. The most recent state is used to generate a new
plan that deals with this situation by navigating the AUV to a
surface point where maintenance is accomplished before ex-
ecuting the rest of the goals. The action hardware-repair
reestablishes the predicate associated with hardware stabil-
ity. SEA helps to avoid situations where the model inaccu-
racy leads to build preliminary plans.

Table 3 describes the verbalisation of the plan execution in
Table 2. We select the interesting actions in the plan (actions
in red) for verbalisation. In addition, we introduce the ver-
balisation of all failure notifications. The action status pro-
vides the information regarding the action state, which can
be enabled (AE), achieved (AA) or cancelled (CA). This sta-
tus is evaluated at the action start (TO) and the end (T1). We
use this information to provide an idea of the mission time to
the user. The verbalisation for each action is presented on the
right side of Table 3. When an error is detected, the specific
type, risk level, and additional specifications are mentioned.
The explanations make the user aware that the robot will
change its behaviour with respect to the original plan. Once
replanning is completed, the Verbaliser notifies the user. The
system assures the user the mission is completed when goals
are achieved and the robot is retrieved. Inner functionalities
such as the low-level algorithms to identify failures are not
described during plan execution to avoid mental overload
and loss of interest.

8 Conclusion and Future Work

We have introduced a planning verbaliser with our work,
which offers state awareness to users/operators with mini-
mal experience on Al planning algorithms through natural
language explanations. Our system reasons about problem
model and plans by analysing the offline solution. During
plan execution, it gives details about action completion, er-
ror detection and mission replanning. The system shows ef-
fectiveness in defining the reasons for plan deviations during
mission execution. Further evaluation is required to estimate
the efficacy of the explanations towards the disambiguation
of decision making. Future work aims to trigger API calls
via dialogue-based interaction to enable the user to request
specific information about missions. Additionally, we would
like to personalise explanations to accommodate both expert
and novice planning users and maintain interest in the inter-
action by presenting the optimal amount of information. Fi-
nally, we intend to automate content selection with data from
a generic domain and ontology, which will include multiple
vehicle types and actions.

Acknowledgments

This work was funded and supported by the EPSRC
ORCA Hub (EP/R026173/1), UKRI Node on Trust
(EP/V026682/1), EPSRC CDT on Robotics and Au-
tonomous Systems (EP/S023208/1), SeeByte Ltd and SRPe.

References

Adadi, A.; and Berrada, M. 2018. Peeking inside the black-
box: a survey on explainable artificial intelligence (XAI).
IEEE Access 6: 52138-52160.

Babli, M.; Onaindia, E.; and Marzal, E. 2019. Extending
planning knowledge using ontologies for goal opportunities.
arXiv preprint arXiv:1904.03606 .

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In Proceedings of ICAPS, 2-10.

Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2007. A Knowledge Engineering and Planning
Framework based on OWL Ontologies. In Proc. of ICKEPS.

Carreno, Y.; Pairet, E.; Petillot, Y.; and Petrick, R. P. A.
2020. A decentralised strategy for heterogeneous auv mis-
sions via goal distribution and temporal planning. In Pro-
ceedings of ICAPS, 431-439.

Carreno, Y.; Scharff Willners, J.; Petillot, Y. R.; and Petrick,
R. 2021. Situation-Aware Task Planning for Robust AUV
Exploration in Extreme Environments. In Proceedings of
the 1IJCAI Workshop on Robust and Reliable Autonomy in
the Wild.

Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Maga-
zzeni, D.; and Smith, D. 2019. Towards explainable Al plan-
ning as a service. In Proceedings of the ICAPS Workshop on
Explainable Planning (XAIP), 104—112.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System.
In Proceedings of ICAPS, 333-341.

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The emerging landscape of explainable automated planning
& decision making. In Proceedings of IJCAI, 4803-4811.

Cioffi, M.; and Thompson, S. 2007. Planning with the Se-
mantic Web by fusing Ontologies and Planning Domain
Definitions. In Proc. of Conference on Innovative Tech-
niques and Applications on Artificial Intelligence, 289-302.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR 20:
61-124.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. In Proc. of IJCAI Workshop on Explainable Al.

Galanis, D.; and Androutsopoulos, 1. 2007. Generating mul-
tilingual descriptions from linguistically annotated OWL on-
tologies: the NaturalOWL system. In Proc. ENLG, 143-146.
Garcia, F. J. C.; Robb, D. A.; Liu, X.; Laskov, A.; Patron,
P; and Hastie, H. 2018. Explainable autonomy: A study
of explanation styles for building clear mental models. In
Proceedings of the INLG, 99-108.

Gatt, A.; and Reiter, E. 2009. SimpleNLG: A realisation
engine for practical applications. In Proc. of ENLG, 90-93.
Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G.; and Wang,
Z.2014. HermiT: an OWL 2 reasoner. Journal of Automated
Reasoning 53(3): 245-269.

Hastie, H.; Liu, X.; and Patron, P. 2016. A demonstration of
multimodal debrief generation for AUV, post-mission and
in-mission. In Proceedings of ICMI, 404—405.

Hastie, H.; Liu, X.; and Patron, P. 2017. Trust triggers for
multimodal command and control interfaces. In Proceedings
of ICMI, 261-268.

Lamy, J.-B. 2017. Owlready: Ontology-oriented program-
ming in Python with automatic classification and high level
constructs for biomedical ontologies. Artificial Intelligence
in Medicine 80: 11-28.

McCluskey, T. L.; and Cresswell, S. N. 2005. Importing
Ontological Information into Planning Domain Models. In
Proceedings of the ICAPS Workshop on the Role of Ontolo-
gies in Planning and Scheduling.

McGuinness, D. L.; Van Harmelen, F.; et al. 2004. OWL
web ontology language overview. W3C recommendation
10(10): 2004.

McNeill, F.; and Bundy, A. 2007. Dynamic, automatic, first-
order ontology repair by diagnosis of failed plan execution.
IJSWIS 3(3): 1-35.

Miguelanez, E.; Patron, P.; Brown, K. E.; Petillot, Y. R.; and
Lane, D. M. 2010. Semantic knowledge-based framework
to improve the situation awareness of autonomous underwa-
ter vehicles. IEEE Transactions on Knowledge and Data
Engineering 23(5): 759-773.

Moon, J.; Magazzeni, D.; and Cashmore, M. 2019. Towards
Explanations of Plan Execution for Human-Robot Teaming.
In Proceedings of SDMM, 58—64.

Nikolaidis, S.; Kwon, M.; Forlizzi, J.; and Srinivasa, S.
2018. Planning with verbal communication for human-robot
collaboration. ACM Transactions on HRI 7(3): 1-21.

Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS:
an open-source Robot Operating System. In Proceedings of
the ICRA Workshop on Open Source Software.

Robb, D. A.; Chiyah Garcia, F. J.; Laskov, A.; Liu, X.; Pa-
tron, P.; and Hastie, H. 2018. Keep me in the loop: Increas-

ing operator situation awareness through a conversational
multimodal interface. In Proceedings of ICMI, 384-392.

Rosenthal, S.; Selvaraj, S. P.; and Veloso, M. M. 2016. Ver-
balization: Narration of Autonomous Robot Experience. In
Proceedings of IJCAI, 862-868.

Sohrabi, S.; Baier, J. A.; and Mcllraith, S. A. 2011. Pre-
ferred explanations: Theory and generation via planning. In
Proceedings of AAAL

Sridharan, M.; and Meadows, B. 2019. Towards a The-

ory of Explanations for Human-Robot Collaboration. KI-
Kiinstliche Intelligenz 33(4): 331-342.

Tenorth, M.; and Beetz, M. 2009. KnowRob—knowledge
processing for autonomous personal robots. In Proceedings
of IROS, 4261-4266.

Thielstrom, R.; Roque, A.; Chita-Tegmark, M.; and Scheutz,
M. 2020. Generating explanations of action failures in a
cognitive robotic architecture. In Workshop on Interactive
Natural Language Technology for Explainable Al, 67-72.

