
Reuniting the LOCM Family: An Alternative Method for Identifying Static
Relationships

Alan Lindsay
Automated Planning Lab,

Heriot-Watt University, Edinburgh, Scotland, UK
alan.lindsay@hw.ac.uk

Abstract

The LOCM-family of domain model acquisition approaches
examine synthesising planning models from action se-
quences. The resulting systems have proven effective at accu-
rately uncovering planning model dynamics, static relation-
ships and action costs. Within the family, the LOP system
provides a general approach for identifying static relation-
ships; however, LOP requires optimal plans as input, which
can be impractical for (potentially hand-crafted) action se-
quences. In particular, in domains where the actions are as-
sociated with costs, specifying appropriate action sequences
may require metric optimisation, or perhaps less intuitive,
unit-cost optimisation. The aim of this work has been to ad-
dress this conflict, by unifying the input requirements of the
LOCM-family of systems. As a start we have developed an
approach for identifying static predicates, which does not rely
on unit-cost optimal plans. Instead it operates from a correct
model of the system’s dynamics (e.g., as typically output by
LOCM I or II) and the set of reachable actions. Our approach
identifies the missing constraints by comparing the actions al-
lowed by the model of the dynamics with the set of reachable
actions. We demonstrate the approach’s accuracy on several
benchmark planning domains and also show that it can iden-
tify the static relationships more accurately than the existing
LOP approach.

1 Introduction
Planning models play a fundamental role in Automated
Planning. However, modelling has been identified as a bot-
tleneck, due to the skills required to develop these mod-
els. This has inspired a variety of methods for support-
ing the authoring of domain models, including frameworks
similar to Integrated Development Environments for use
by software engineers, e.g., the GIPO (Simpson, Kitchin,
and McCluskey 2007), itSIMPLE (Vaquero et al. 2007)
and KIWI (Wickler, Chrpa, and McCluskey 2014) systems.
These modelling tools are useful for rapid development of
domains by an experienced domain modeller. Frameworks
also exist to refine (Lindsay et al. 2020) or extend (Porte-
ous et al. 2021) existing planning models, thus reducing the
burden of modelling a complete domain model. Another av-
enue of research to aid in the modelling process is based on
learning models from observations: namely that of domain
model acquisition.

Domain model acquisition is the problem of learning a

formal domain model of a system from some form of in-
put data. There are three main ways in which domain model
acquisition systems vary: the nature of the input data they
receive, the expressiveness of the target language and the
query system by which they acquire the input data. In this
work we focus on the LOCM-family of domain model acqui-
sition approaches, which synthesise planning models from
action sequences (with total plan costs). We observe that the
input requirements across the LOCM-family can lead to the
approaches not being applicable. The most strict of the re-
quirements comes from the identification of static relation-
ships in the LOP system (Gregory and Cresswell 2015). In
particular, LOP relies on optimal plans, which introduces a
strong requirement on the input action sequences. Ensuring
that (potentially hand-crafted) action sequences are optimal
is not always practical. This can be compounded in domains
where the actions have action costs, requiring metric optimi-
sation, or the use of the less intuitive unit-cost optimality.

A core idea in the LOP approach is to use a Boolean func-
tion to prune a hypothesis space. The hypotheses are ordered
and LOP starts with the most complex model, incrementally
simplifying that model. At each step the Boolean function
is used as a proxy to determine if the simpler model is suf-
ficient to capture the required structure. The LOP approach
relies on testing optimal plan lengths, and considers a hy-
pothesis sufficient if it maintains the optimal plan lengths.
However, we observe that there are other Boolean functions
that can be used to validate hypotheses and not all require
optimal plans.

We consider the problem of creating static predicates as
a classification problem: a function that determines whether
an action is applicable or not. Our approach operates from a
set of positive and negative examples, which provide action
headers (an action name and its arguments) that are either
conceivable or not conceivable in a planning problem. We
define a Boolean function, which uses the examples to vali-
date static relationships and can replace the optimality check
used in LOP. We present the results of an empirical evalu-
ation, which tests the approach using benchmark planning
problems. The results demonstrate that our approach is ef-
fective at identifying the underlying static relationships in
the target models and that it is more accurate than LOP.

The structure of the paper is as follows: first the LOCM-
family of approaches are presented; then a definition and a

(define (domain transport)
(:types

location target locatable - object
vehicle package - locatable
capacity-number - object

)
(:predicates

(road ?l1 ?l2 - location)
(at ?x - locatable ?v - location)
(in ?x - package ?v - vehicle)
(capacity ?v - vehicle ?s1 - capacity-number)
(capacity-predecessor ?s1 ?s2 - capacity-number)

)
(:functions

(road-length ?l1 ?l2 - location) - number
(total-cost) - number

)
(:action drive
:parameters (?v - vehicle ?l1 ?l2 - location

?c - capacity)
:precondition (and

(at ?v ?l1)
(capacity ?v ?c)
(road ?l1 ?l2)

)
:effect (and

(not (at ?v ?l1))
(at ?v ?l2)
(increase (total-cost) (road-length ?l1 ?l2))

))
(:action pick-up

:parameters (?v - vehicle ?l - location
?p - package ?s1 ?s2 - capacity-number)

:precondition (and
(at ?v ?l)
(at ?p ?l)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s2)

)
:effect (and

(not (at ?p ?l))
(in ?p ?v)
(capacity ?v ?s1)
(not (capacity ?v ?s2))
(increase (total-cost) 1)

))
(:action drop
:parameters (?v - vehicle ?l - location

?p - package ?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(in ?p ?v)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s1)

)
:effect (and

(not (in ?p ?v))
(at ?p ?l)
(capacity ?v ?s2)
(not (capacity ?v ?s1))
(increase (total-cost) 1)

)))

Figure 1: Transport Domain: An example of a domain with
static relationships and action costs. This domain provides a
running example through the paper.

method for obtaining the positive and negative examples is
described, and we present the approach for generating static
relationships from the examples; we then reflect on the in-
put requirements for the LOCM-family and evaluate our ap-
proach; finally we conclude and suggest future works.

2 Background: The LOCM Family
The domain model acquisition system that we introduce fits
into the LOCM-family of approaches that use the LOCM
or LOCM2 system as a pre-processing step. In order to de-
scribe these systems, and also our own, we introduce the
Transport domain as a running example. This introduction
follows (Gregory and Lindsay 2016).

PLAN 1: COST 143
drive truck2 loc3 loc1 cpy3
pickup truck2 loc1 pkg1 cpy2 cpy3
drive truck2 loc1 loc3 cpy2
pickup truck2 loc3 pkg3 cpy1 cpy2
pickup truck1 loc2 pkg4 cpy2 cpy3
drive truck2 loc3 loc1 cpy1
drop truck2 loc1 pkg1 cpy1 cpy2
drive truck2 loc1 loc3 cpy2
drive truck2 loc3 loc2 cpy2
pickup truck1 loc2 pkg2 cpy1 cpy2

PLAN 2: COST 151
pickup truck2 loc6 pkg1 cpy3 cpy4
pickup truck2 loc6 pkg3 cpy2 cpy3
drive truck2 loc6 loc2 cpy2
pickup truck1 loc6 pkg4 cpy1 cpy2
drive truck1 loc6 loc2 cpy1

Figure 2: Two plans from the Transport domain. Collections
of plans form the input to many domain model acquisition
systems.

2.1 Running Example: The Transport Domain
Figure 1 shows the Transport domain, which is a typical
logistics-type planning domain. It has three operators, each
with an action cost. There are static predicates used in each
of the actions. The drive action is constrained to allow
traversing between certain pairs of locations. The pick-up
action increments and the drop action decrements a count
of the number of packages in the truck. This is encoded us-
ing a static predicate that captures the ordering. Note that
the domain is slightly modified from the benchmark domain.
An extra parameter and precondition have been added to the
drive action. This change does not alter the search space,
but is required for LOCM and LOCM2 to correctly learn the
domain dynamics (Gregory and Cresswell 2015).

2.2 The LOCM Algorithms
The LOCM family of systems (Cresswell, McCluskey, and
West 2009; Cresswell and Gregory 2011; Gregory and
Cresswell 2015; Gregory and Lindsay 2016) operate with
the assumption that each object is represented by a param-
eterised finite state machine. They use no other information
besides the action sequences, such as those shown in Fig-
ure 2 for the Transport domain, i.e. no information about
types, predicates, initial or final states. This is possible be-
cause of restricting assumptions about the form of the do-
main model. The key assumptions of the LOCM-family of
algorithms are: that the behaviour of each object is described
by one (or more in LOCM2) finite state machines whose arcs
are the transitions that change the state of the object. And
crucially, each of these transitions can only occur once in an
object’s FSM.

An example of the output of LOCM is shown in Figure 3.
The state machines are shown for the Truck and the Package
types. The meaning of the Package FSM is that a package
can be in two states (in and out of a truck). Within a truck,
it has an association with a truck, and when outside of a

Figure 3: The finite state machines derived by LOCM for
the truck type in the transport domain for the two interesting
object types: package and truck. The truck state machine has
a single state, with two state parameters for the location of
truck and the capacity of the truck.

truck it has an association with a location (represented by
the state parameters in square brackets). The Truck type is
represented by a single state FSM, where the only interesting
structure is in the state parameters.

The LOP system (Gregory and Cresswell 2015) extends
the model of the dynamics created by the LOCM and
LOCM2 algorithms. It learns static relations by comparing
optimal input plans with the optimal plans found using the
induced domain model of LOCM2. Assuming that LOCM2
has detected the dynamics of the problem correctly, then if
the induced plan is shorter, this provides evidence to support
the hypothesis that a static relation has gone undetected.

ASCoL is an alternative approach for learning static rela-
tionships, which is also compatible with LOCM. ASCoL is
based on the assumption that static relationships will only
exist between same type action parameters. Following LOP,
we consider a more general definition of static relationships:
as relationships over subsets of action parameters.

The final step is to learn action costs using the NLOCM
system (Gregory and Lindsay 2016). Operating from costed
action sequences the system identifies the actions that must
incur cost and also identifies the action parameters that lead
to alternative costs.

This work aims to address the requirement of optimal
plans for the LOP system. Ensuring that (potentially hand-
crafted) action sequences are optimal is not always practical.
This is more complicated in domains where the actions have
action costs. For example, consider confirming that the in-
put plans in Figure 2, are optimal. This would require metric
optimisation, or the use of unit-cost optimality, which are
unlikely to be intuitive for a user.

3 Acquiring Positive and Negative Examples
For Static Relationships

A motivation for this work is to open up the LOCM-family
of approaches to a wider range of applications. The LOP ap-
proach relied on testing optimal plan lengths as a proxy to

Figure 4: The diagram presents a compartmentalised illus-
tration of the state system of the partial model, MP . It em-
phasises that the target model is a subcomponent of the
partial model. The solid arrows are transitions in the tar-
get model, MT . The more permissive MP can allow addi-
tional actions, and where these actions transition from states
in MT , we call them frontier actions. An example sequence,
a1, . . . , ak+2 is shown in green. We consider example se-
quences consisting of any number of actions from MT fol-
lowed by a single frontier action.

determine if a hypothesis model simplification was still suf-
ficient to capture the required structure. Ensuring that (po-
tentially hand-crafted) action sequences are optimal is not
always practical. In this work we consider the problem as
creating a classifier that distinguishes between applicable
and non-applicable actions. We describe a suitable set of
positive and negative examples and suggest alternatives for
how these examples can be acquired.

3.1 Positive and Negative Examples
In this work we will assume that we have a partial model,
MP , which we assume is acquired from a domain model ac-
quisition system, such as LOCM. In particular, we assume
that MP accurately captures the dynamics of the target sys-
tem. It is also typical for a model generated by LOCM to
capture typing information for the objects and action param-
eters. Our approach will identify any missing typing infor-
mation, although missing typing information will impact on
performance. We will use MT to denote the target system.

Static predicates act as constraints that classify action
headers as valid and invalid. In this work we have considered
learning this classifier using positive and negative examples.
As we start from the existing partial model, we start by con-
straining the set of possible examples (positive and negative)
to actions modelled in the partial model, AP . We seek pos-
itive examples that are actions that are conceivable in the
target system. This means that there is a situation where the
action could be applicable. At this stage it is not necessary
to consider whether the action is actually reachable from the
initial state. The negative examples can be any action that is
not conceivable in the target system. The problem is then to
identify a set of static relationships that are missing from the
partial model and separate the positive and negative exam-
ples (this is the subject of the following section).

In order to allow concise separation between the exam-
ples, the negative examples should not include action head-
ers that are simply not reachable and would otherwise be
applicable. For example, in Logistics a truck positioned in
City1 can move between the airport and location in City1.
There is nothing inconceivable about the truck moving be-
tween the airport and location in City2, it is simply not pos-
sible because it is not reachable. Including these action head-
ers as negative examples will still lead to a correct model
being learned; however, it may be less concise. For exam-
ple, in the Logistics example, the truck parameter would be
included in the move action static relationship.

One way to ensure this relationship is to consider a fron-
tier between sequences of actions that are reachable in the
target system and the first action that is not allowed in the
target system. Consider an action trace, s0, a1, . . . , an, sn,
which is valid in the partial model, MP . Such action se-
quences can be separated into three groups, as illustrated
in Figure 4. For some index, k, we assume that all actions,
ai (i < k) are in the target actions (ai ∈ AT). Consequently,
sk−1 is a valid state in MT , because we have assumed that
the dynamics of the model are captured correctly. This is
illustrated in in the bottom of Figure 4. If the next action,
ak, is not in the applied actions (ak 6∈ AT) then we call ak
a frontier action (middle of Figure 4). We call these fron-
tier actions, as they indicate the separating line between the
valid part of an action sequence (that transitions only using
actions in the target model) and the remainder of the invalid
sequence.

For example, if we consider Plan 1 in Figure 2 we can
see that driving from loc1 to loc3 and from loc3 to loc2
are possible and the associated drive actions will be in
AT (e.g., bottom of Figure 4). However, the partial model,
MP , would also allow driving directly from loc1 to loc2,
which is not possible in MT . Some drive actions from
loc1 to loc2 will be applicable from states in AT , e.g.,
(drive truck2 loc1 loc2 cpy2) in place of the eighth ac-
tion in the plan. This is therefore part of the frontier (e.g.,
middle of Figure 4). We notice that there are different ways
that such examples could be acquired.

All applicable actions In some systems identifying the set
of applicable actions might be possible. For example, there
might be input validation on terminal input, or the space may
be fully covered in the examples. The applicable actions can
be used directly as the positive examples. The negative ex-
amples can then be identified by expanding states using the
partial model and recording those not in the applicable ac-
tions. This approach is presented in more detail below.

Human-in-the-loop Either the user could include exam-
ples of inapplicable actions with the input plan sequences
(i.e., noting at stages of a plan that certain actions are inap-
plicable), or the system could present the user with example
sequences generated from the partial model and ask the user
to note the first inapplicable action.

Of these alternative approaches, we have used the all ap-
plicable actions method in this work.

Algorithm 1 FRONTIER FINDER(FF): Set positive exam-
ples (E+) as reachable actions; and find negative examples
(E−) at the frontier of applicability.

1: function FF(s,AT ,AP)
2: E− ← []; E+ ← AT

3: discovered← [s]; queue = []
4: queue.enqueue(s)
5: while ! queue.isEmpty() do
6: s← queue.dequeue()
7: for all {a ∈ AP |applicableP (s, a)} do
8: s′ ← applyP (s, a)
9: if a 6∈ AT then

10: E− ← E− + a
11: else
12: if ! s′ ∈ discovered then
13: queue.enqueue(s′)
14: end if
15: end if
16: end for
17: end while
18: return E+, E−

19: end function

3.2 The Frontier of Inapplicable Actions
We are interested in identifying the frontier actions because
they must have missing constraints. Notice that we assume
that the dynamics of the system are captured correctly in the
partial model. As a frontier action is applicable in the partial
model then the only reason it is not applicable in the target
model is that the action must be missing a constraint. For
actions applied from other states in the partial model (e.g.,
top part of Figure 4) we cannot be sure. It is possible that
these actions are just not reachable from the initial state and
would have been applicable in other initial states.

Our approach starts from the set of applicable actions,
searching through the target model’s search space in order to
discover the set of frontier actions. The pseudocode for the
Frontier Finder method is presented in Algorithm 1,
which modifies a standard breadth first search. The positive
examples (E+) are declared upfront as the set of applicable
actions in the target model (line 2). The initial state of the
problem (discoverable using the partial model and the ac-
tion sequences used to learn it) is added to the queue and
the search proceeds as usual. At each state expansion the
applicable actions of the partial model (AP) are each exam-
ined (lines 7-16). If the action is not in AT then it is added
to the frontier set (the set of negative examples, E−). Oth-
erwise, the resulting state is added to the queue and search
proceeds. Notice that only states that are consistent with the
target model can be added to the queue. This is because the
dynamics of the partial model are assumed to be correct and
the context is irrelevant for static predicates. As a conse-
quence, every action added to E− is a single step, transi-
tioning from a consistent and reachable state. This means
that every action in E− must be missing a constraint in its
preconditions (otherwise it would be in AT). The method
outputs the sets of positive and negative examples.

Algorithm 2 SUFFICIENT PARTITION TEST: Given a tuple
partition P , and a set of positive (E+) and negative (E−) ex-
amples, determine if the tuples in P can separate the positive
and negative examples.

1: function ISSUFFICIENTPARTITION(P,E+, E−)
2: TV maps← getTupleValMaps(P,E+, E−)
3: return canExplainExmpls(TV maps,E+, E−)
4: end function
5:
6: function GETTUPLEVALMAP(P,E+, E−)
7: TV maps← list()
8: for all tup ∈ P do
9: tupvalmap← map()

10: for all group ∈ groupby(tup,E+ ∪ E−) do
11: val = (∃e ∈ group e.target == True)
12: for all e ∈ group do
13: tupvalmap[e]← val
14: end for
15: end for
16: TV maps← tupmaps+ tupvalmap
17: end for
18: return tupvalmap
19: end function
20:
21: function CANEXPLAINEXMPLS(TV maps,E+, E−)
22: for all 〈e〉 ∈ E+ ∪ E− do
23: okExample← e ∈ E+

24: for all tupvalmap ∈ TV maps do
25: if ! tupvalmap[e] then
26: okExample←! okExample
27: break
28: end if
29: end for
30: if ! okExample then
31: return False
32: end if
33: end for
34: return True
35: end function

4 Identifying Static Relationships From
Examples

Following (Gregory and Cresswell 2015), we aim to find
tuples of parameters for each action that concisely capture
the static relation. The first step is to identify a (potentially
empty) tuple, for each action, which identifies the action pa-
rameters that must be involved in the static.

Definition 1 (Static Parameter Tuple). A static parameter
tuple is a tuple, T = (i0, . . . , im), for an action, a =
(opname, p0, . . . , pn), which identifies the action parame-
ters, (pi0 , . . . , pim) that must be involved in the static.

Each static parameter tuple can subsequently be divided
into a collection of smaller tuples. In this section we adapt
the LOP approach in order to use the examples identified in
the previous section.

4.1 A Boolean Function Based on Applicable
Actions

At the heart of the LOP approach is a Boolean function,
which is used to prune tuples from the hypothesis space.
In place of testing optimal plan length, our approach uses
the set of positive and negative examples generated by Al-
gorithm 1. Our Boolean function tests whether a particular
group of tuples is sufficient to separate the examples.
Definition 2 (Action Tuple Projection). An action’s tuple
projection for a ground action, a = (opname, o0, . . . , on),
for a tuple, T = (i0, . . . , im), is the tuple, (oi0 , . . . , oim),
identifying the action’s arguments for each of the tuple’s in-
dexes.

Static relationships are either positive or negative for
all examples in a problem. This means that only a single
Boolean value can be allocated for each distinct action tuple
projection. Notice that for an action to be applicable, all as-
sociated static propositions must hold. Therefore each of the
positive examples can be used to set the appropriate values
for each associated action tuple projection. In general the
negative examples indicate that at least one of the relevant
static propositions does not hold. The allocation of values to
the remaining tuples could be allocated by finding a consis-
tent model (with the requirement of the negative examples).
However, in terms of information content of the examples it
suffices to set all values to False, unless they are required
by a positive example.

The pseudocode capturing this strategy is
presented in Algorithm 2. The main function,
IsSufficientPartition, takes as argument a
set of tuples (this is the partition, P , for reasons that will
become clear), and the positive and negative examples. The
output of the function is a Boolean that indicates whether
the tuples separate the examples.1

The first stage (line 2 and lines 6-19) is to create a tup-
valmap for each of the tuples. Each map assigns a Boolean
value to each of the examples. This is achieved by group-
ing each of the example actions by their tuple projection
(line 10), determining the appropriate value for the projec-
tion (line 11): True only if there is a positive example in the
group of examples, and allocating that value to each of the
examples in the group.

The second stage (line 3 and lines 21-35) iterates through
each example and ensures that the value for each tuple is
appropriate (lines 24-29). This is determined based on the
target value of the tuple (line 23). In the case of positive ex-
amples, this test ensures that all of the values are True. For
the negative examples, this test ensures at least one exam-
ple is False. If this test fails then the function return False
(lines 30-32). Otherwise, the function continues to test the
next example.

4.2 Part 1: Parameters Involved in Static
Relationships

The first stage in the LOP approach involves identifying
the minimal static parameter tuple for each action. Our al-

1Sets of examples for different problems are each tested sepa-
rately and the partition fails if it fails for any problem.

Algorithm 3 MINIMAL STATIC PARAMETER TUPLE
FINDER (MSPT): Given an action a, and a Boolean func-
tion: tuples test, find the minimal static parameter tu-
ple that satisfies the function.

1: function MSPT(a, tuples test)
2: minSPT ← parameters(a)
3: for all p ∈ minSPT do
4: minSPT ′ ← (minSPT\{p})
5: if tuples test([minSPT ′]) then
6: minSPT ← minSPT ′

7: end if
8: end for
9: return minSPT

10: end function

Algorithm 4 STATIC PARAMETER TUPLE PARTITION-
ING (PART): Given a partition P , and a Boolean function:
tuples test, find a minimal partitioning of P (with re-
spect to rank) that satisfies the function.

1: function PART(P, tuples test)
2: if ! tuples test(P) then
3: return ⊥
4: end if
5: minP ← P
6: for all P ′ ∈ refinement(P) do
7: minP ′ ← PART(P ′)
8: if rank(minP ′) < rank(minP) then
9: minP ← minP ′

10: end if
11: end for
12: return minP
13: end function

gorithm is presented in Algorithm 3 and generalises Algo-
rithm 2 in (Gregory and Cresswell 2015). The starting point
is to assume that all of the tuples are involved in the static
parameter tuple. For example, the tuple {0,1,2,3} would
be the starting point for the drive action in Transport, which
has 4 parameters. The system then incrementally considers
removing each parameter from the tuple. At each step the tu-
ple is tested to determine whether it is still sufficient. In LOP
that test was done using the principle of preserving optimal-
ity. We generalise this as a tuples testBoolean function
that is passed as an argument. In our approach this function
wraps the IsSufficientPartition function in Algo-
rithm 2, by passing our examples, along with the largest par-
tition. For the drive action the approach considers the tuples
in order: {1,2,3}, {0,2,3}, {0,1,2}. Tuple, {1,2,3} sat-
isfies the test. The process is then repeated, until no param-
eters can be removed. For example, considering: {2,3} and
{1,3}, which both fail, before trying {1,2}, which satisfies
the test. No further parameters can be removed and {1,2} is
returned.

4.3 Part 2: Partitioning the Parameter Tuple
The second stage in the LOP approach involves identify-
ing a partitioning of the minimal static parameter tuple for

each action. The aim is to divide the tuple up, mitigating
the combinatorial growth of parameter sets. Our algorithm
is presented in Algorithm 4 and generalises Algorithm 3
in (Gregory and Cresswell 2015). Starting with the single-
ton set of the complete tuple (e.g., the partition: [{1,2}],
from the example above), the approach aims to recursively
divide each element of the set into smaller parts. The re-
cursive algorithm first tests whether the partition is suffi-
cient. Again we replace the approach in LOP with a general
tuples test Boolean function and our approach uses
the IsSufficientPartition function in Algorithm 2.
The algorithm then recursively explores a collection of re-
finements. The refinement function generates each of
the possible ways that one of the partition’s tuples can get
split into two parts. In the Transport example, the function
would return one possible refinement: [{1},{2}]. The al-
gorithm attempts to recursively refine each of these refine-
ments. The refined partition is then tested against the best so
far and the winner retained. The criteria used to determine
the best partition is based on the partitions rank: the size of
the largest tuple in the partition, minus the total number of
partitions (Gregory and Cresswell 2015).

4.4 Part 3: Identifying Universal Statics
The final stage in the LOP approach involves determining
whether the static relationships are universal or not. A static
relationships is universal if it is shared between every prob-
lem instance. This part of the system can be generalised
from (Gregory and Cresswell 2015) in a similar way to the
approaches above, as it requires a single test to determine
whether using the combined set of all observed statics in ev-
ery problem is consistent. In our approach the idea will be
to check the consistency of the set of statics using the exam-
ples. This part of the system is still under development.

5 Evaluation
In this section we evaluate our approach for identifying static
relationships by testing it using several benchmark planning
domains. We have implemented the frontier search and the
first and second parts of the approach (described in Sections
3 and 4) in the STAATIC system, which means that our sys-
tem can identify and partition the tuple of parameters that are
constrained by a static relationship. The system does not cur-
rently identify universal static predicates. The starting point
for our system is a correct dynamic model (e.g., the output
of the LOCM system). Our approach is compared with the
results reported for the LOP system, which is the most re-
lated approach. We have selected five planning domains to
demonstrate the approach and to highlight some of the dif-
ferences with the LOP approach.

For each domain we used the benchmark domain and gen-
erated the set of reachable actions for one problem. Our sys-
tem operates from the no statics domain model, a set of no
statics problem models and the set of reachable actions for
each of these problems. The system generates the frontier
for a given maximum state count and records the positive
and negative examples for each problem (Section 3). These
examples are then used for each action to first identify a

Domain Benchmark Domain 10x1 100x1 LOP
|Ops| MA SR SR Err SR Err SR Err

Blocksworld 4 2 0 0 0 0 0 0 0
Driverlog 6 4 2 1 1 2 0 2 1

Freecell 10 7 10 10 1 10 0 - (4) -(6)
Miconic 4 2 4 3 1 4 0 4 2

Zeno-travel 5 6 3 3 0 3 0 3 0

Table 1: The table presents results and domain properties for five benchmark planning domains. We report the number of actions
with static relationships (SR) and the number of errors (Err) for two versions of STAATIC: 10 states and 1 problem (10x1) and
100 states and 1 problem (100x1), and the reported results for LOP. Bold is used to indicate the fewest errors for a domain.

minimal set of parameters that require constrained and then
subsequently partition this set into smaller groupings, if ap-
propriate (Section 4). The final step is to use the partitions
to add the new static predicates to the domain and problem
models.

For comparison we used two versions of our approach: 10
states and 1 problem (10x1) and 100 states and 1 problem
(100x1). We have added an upper limit to the number of
states that are expanded in Algorithm 1. We test the approach
with a maximum of 10 and 100 expanded states.

5.1 Discussion
Table 1 presents the results of running our system on each of
the domains. The two versions of STAATIC are compared to
the reported results for LOP (Gregory and Cresswell 2015).
For each approach we report the number of actions with
static relationships (SR) and the number of errors (Err). The
table also presents number of actions (|Ops|), max action
arity (MA) and number of actions with static relationships
(SR) for each target domain. The table shows that the ap-
proach is effective at uncovering the correct parameter tu-
ples. In most of the domains Part 2 finds no improvement
(no partitioning of the static parameter tuple), which is cor-
rect. The Freecell domain allows partitioning and we com-
ment on this aspect below. We will now consider the results
for each domain.

Driverlog: The driverlog domain uses two binary static
predicates to encode the driving map and the walking map.
The system correctly identifies each of these static predi-
cates with 100 expanded states. For the walk action it cor-
rectly identified the static parameter tuple: {1,2} (corre-
sponding to the source and destination locations) and con-
cluded that it cannot be partitioned. The 10 expanded states
did not include any states with a driver in a truck and there-
fore the approach failed to provide any negative examples
for the drive-truck action. LOP was able to identify the stat-
ics correctly. However, LOP detected the path map static as
a universal static relationship. The direct use of positive and
negative examples by our approach should help in identify
that this is not a universal relationship (once extended to ex-
amine universal predicates).

Blocksworld: The blocksworld domain has no static pred-
icates. Both STAATIC and LOP correctly identified empty

tuples for each of the actions.

Miconic: The miconic domain uses binary static predi-
cates in each of its actions. The system correctly identifies
each these static relationships with 100 state expansions.
The statics used in the board and depart actions declare the
initial and final locations (respectively) for each lift user.
The up and down actions use binary relationships to con-
strain movement between floors. Whereas LOP was not able
to identify the statics for the up and down actions (because
they do not impact on optimal plan length), our approach
correctly identifies these statics.

Zeno Travel: In Zeno-travel the system correctly identi-
fies the three actions that require static propositions: zoom,
fly and refuel. Fly and refuel require binary relations to
encode incremental steps: either incrementing (refuel) or
decrementing (fly). The zoom operator uses two fuel levels
and uses three parameters {3,4,5} to detail the step using
two binary relationships. LOP identified the importance of
the top and bottom levels and made a binary predicate (miss-
ing out the middle parameter), which models an n-plus-two
relation instead. Our approach correctly identifies the triple.
This is because our approach is based directly from exam-
ples, whereas LOP uses a proxy (optimality test).

Freecell: In Freecell all of the actions have parameters
involved in static relationships. Moreover, some of the do-
mains have very high arity, making this domain more chal-
lenging than some of the others. With 100 expanded states,
STAATIC is able to correctly identify all the static parameter
tuples. For example, the system correctly identifies the tuple
{0,1,2,3} for the moveb action. With 10 expanded states,
STAATIC incorrectly identifies the tuple in one action. In the
domains that 10 expanded states is insufficient, it is possible
that an alternative approach for selecting the expanded states
(e.g., plan steps or random) would allow a more comprehen-
sive coverage in fewer states. The LOP system was not able
to complete the benchmark version of Freecell. Its subopti-
mal version uncovered some noisy static information.

In part 2 of the approach, STAATIC also found
partitionings of the static parameter tuples. For ex-
ample, in the moveb action the static parameters tu-
ple, {0,1,2,3}, gives rise to 7 alternative refinements:
[{0},{1,2,3}],[{1},{0,2,3}],. . . . Its analysis identifies

that the best partitioning is [{0,1}{2,3}]. This splits the
parameters into two: a static relationship between the ?card
and ?new-card parameters, corresponding to the canstack
predicate and the ?cols and ?ncols parameters, correspond-
ing to the successor predicate. This corresponds to the fac-
toring in the benchmark domain. In two of the actions
(homefromfreecell and sendtohomeb) it finds tuples of 7 pa-
rameters and explores the 63 refinements (see Part 2). In
each case it returns the partition: [{0,1,2,3,4},{5,6}].

Each of the discovered partitionings correctly identifies
the separable components of parameters. In the benchmark
encoding there are further divisions and sharing of static
facts between actions. E.g., in the 5-tuple in the homefrom-
freecell action, the parameters are linked by binary relation-
ships: suit, value and successor. It is possible that factorings
could be discovered; however, how to ensure that they would
correspond to meaningful abstractions is less obvious.

5.2 Summary
Overall the system performs well and the results demon-
strate that STAATIC accurately identifies static relationships
in several domains. It is particularly interesting that our ap-
proach is able to improve on the LOP approach in several
domains. The use of examples, as opposed to differences in
the optimal plan lengths, has allowed our system to more ac-
curately uncover the underlying static representation used in
the benchmark planning domains. However, there are some
efficiency considerations. When run without types in Free-
cell, our system runs out of memory during preprocess-
ing. Although the system could be implemented more effi-
ciently, it is worth considering the computational issue. Our
approach currently requires grounding the planning model
with only type information (no additional static predicates).
This is problematic in domains with high arity actions with
lots of objects. E.g., Freecell has arity seven actions. It is
possible that this issue can be mitigated by using dynamic
grounding and sampling the actions at each state. We are in-
terested in the future in investigating how many positive and
negative examples are required and ultimately, whether an
approach without all reachable actions is feasible.

6 Related Work
Within the field of domain model acquisition a variety of
input types, used processes and target representations have
been investigated. Most systems use information, such as ac-
tion sequences, predicates, initial and goal states and possi-
bly intermediate states, e.g., ARMS (Wu, Yang, and Jiang
2007) and LAMP (Zhuo et al. 2010). More recent systems
use sequences of images (Asai and Fukunaga 2018) and
natural language action descriptions (Lindsay et al. 2017)
and have examined learning and refining models from noisy
data (Mourao et al. 2012; Lindsay et al. 2020). Approaches
have targeted a wide range of target fragments of the PDDL
language, from propositional (Wu, Yang, and Jiang 2007;
Cresswell and Gregory 2011), including ADL (Zhuo et
al. 2010); to learning action costs (Gregory and Lindsay
2016) and numeric constraints (Segura-Muros, Pérez, and
Fernández-Olivares 2018). STAATIC is situated within the

LOCM-family. A key focus in these works is to use a mini-
mal amount of input, typically sequences of action headers
(possibly associated with a cost). Within the LOCM fam-
ily, LOP and ASCoL (Jilani et al. 2015) are alternative ap-
proaches for deriving static information. LOP provides a
general approach to identifying missing static predicates.
The aim of the STAATIC system is similar; however, it op-
erates from different input data. The intention is to provide
alternative input requirements for using the approaches in
the LOCM-family, that can each be more applicable for dif-
ferent scenarios.

The approach used by LOP and STAATIC of ordering a
hypothesis space and using a Boolean function to prune in-
consistent hypotheses is related to the framework proposed
in (Mehta, Tadepalli, and Fern 2011), which uses an ora-
cle to validate plans. The LOP approach is based on com-
paring optimal plan lengths. Subsequently, the effectiveness
of exploring the hypothesis space using a layering strat-
egy was demonstrated (Gregory and Lindsay 2016). Simi-
lar ideas have recently been used to learn planning models
from a state space graph representation (Bonet and Geffner
2020). Each of the approaches to domain model acquisi-
tion comes with trade-offs. The systems that can target rich
propositional fragments, e.g., (Wu, Yang, and Jiang 2007)
and LAMP (Zhuo et al. 2010), require additional types of
input. The LOCM-based approaches tackle the problem in
several parts, using a heuristic approach to learning the dy-
namics of the system, but require only action sequences. The
approach described in (Bonet and Geffner 2020) is param-
eterised and constructs a large hypothesis space, which can
become impractical for even quite small sized problems and
the approach can lead to multiple alternative hypotheses.

7 Conclusion and Future Work
In this paper we present a new approach for identifying static
relationships from sequences of action headers. The moti-
vation for this work was to consolidate the input require-
ments of the LOCM-family of systems. As a start we have
explored alternative approaches for uncovering static rela-
tionships. Until STAATIC the requirements for uncovering
static relationships required optimal plans for the identifica-
tion of static relationships in LOP, which is not always prac-
tical. In this work we have developed an approach for identi-
fying static predicates, which operates from a correct model
of the system’s dynamics (e.g., the output of LOCM I or II)
and the set of reachable actions. The approach first gener-
ates a set of positive and negative examples, which identify
allowed and not allowed actions. The next step is to use the
examples to identify the actions that must have additional
constraints. The approach therefore substitutes the need of
generating unit-cost optimal plans, with the requirement of
providing the set of reachable actions. We have tested our
approach on five benchmark planning domains and it iden-
tified the static predicates in each domain. Moreover it was
more accurate than LOP in matching the encodings of the
static relationships used in the benchmark domains. In fu-
ture work we will test using dynamic grounding and sam-
pling the actions and investigate relaxing the requirement of
all reachable actions.

Acknowledgments
This work was funded and supported by the ORCA Hub
(orcahub.org), under EPSRC grant EP/R026173/1.

References
Asai, M., and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence.
Bonet, B., and Geffner, H. 2020. Learning first-order sym-
bolic representations for planning from the structure of the
state space. In Proceedings of the 24th European Conference
on Artificial Intelligence (ECAI).
Cresswell, S., and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Plan-
ning Examples. In Proc. of 19th Int. Conf. on Automated
Planning and Scheduling (ICAPS).
Gregory, P., and Cresswell, S. 2015. Domain Model Ac-
quisition in the Presence of Static Relations in the LOP Sys-
tem. In Proc. of 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS), 97–105.
Gregory, P., and Lindsay, A. 2016. Domain Model Acqui-
sition in Domains with Action Costs. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2015. ASCoL: A tool for improving automatic planning do-
main model acquisition. In Proceedings of the International
Conference of the Italian Association for Artificial Intelli-
gence.
Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.;
and Gregory, P. J. 2017. Framer: Planning models from natu-
ral language action descriptions. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).
Lindsay, A.; Franco, S.; Reba, R.; and McCluskey, T. L.
2020. Refining process descriptions from execution data
in hybrid planning domain models. In Proceedings of the
30th International Conference on Automated Planning and
Scheduling (ICAPS).
Mehta, N.; Tadepalli, P.; and Fern, A. 2011. Autonomous
learning of action models for planning. Advances in Neural
Information Processing Systems 24:2465–2473.
Mourao, K.; Zettlemoyer, L.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Uncertainty in Artifical Intelli-
gence, 614 – 623.
Porteous, J.; Ferreira, J. F.; Lindsay, A.; and Cavazza, M.
2021. Automated narrative planning model extension. Jour-
nal of Autonomous Agents and Multi-Agent Systems.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2018. Learning numerical action models from noisy and

partially observable states by means of inductive rule learn-
ing techniques. In Proceedings of the ICAPS Workshop
on Knowledge Engineering for Planning and Scheduling
(KEPS).
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowledge Eng.
Review 22(2):117–134.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itsimple 2.0: An integrated tool for designing plan-
ning domains. In International Conference on Automated
Planning and Scheduling, 336–343.
Wickler, G.; Chrpa, L.; and McCluskey, T. L. 2014. KEWI
- A knowledge engineering tool for modelling AI planning
tasks. In International Conference on Knowledge Engineer-
ing and Ontology Development, 36–47.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An auto-
matic knowledge engineering tool for learning action mod-
els for AI planning. The Knowledge Engineering Review
22(2):135–152.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540–1569.

