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Automated planners are increasingly being integrated into online act-
ing systems. The integration may, for example, embed a domain-
independent temporal planner in a manufacturing system (e.g., the
Xerox printer application) or autonomous vehicles (e.g., a planetary
rover or an underwater glider). The integration may resemble some-
thing more like an “acting and planning stack” where an automated
planner produces an activity or task plan that is further refined by an
actor before being executed by the execution platform of the actor,
such as, a reactive controller (e.g., robotics). Or, the integration may
be a domain-specific policy that maps states to actions (e.g., rein-
forcement learning). Models for planning and execution can be same
or different; the planning model can define context-dependent actions
schema for online (re-)planning or can just specify flexibility to be
handled separately at execution time. Online learning may or may
not be involved, and may include adjusting or augmenting the model,
determining when to repair versus replan, learning to switch policies,
etc. A specific focus of these integrations involves online deliberation
and managing the execution of actions, bringing to the foreground
concerns over how much computational effort planning should invest
over time.

In any of these systems, a planner generates action sequences that
are eventually dispatched to an executive, yet taking action in a dy-
namic world rarely proceeds according to plan. When planning as-
sumptions are challenged during execution, or some dynamic events
occur, it raises a number of interesting questions about how the system
should respond and which is the scope of online deliberation versus ex-
ecution. Is the ”acting” side of the system responsible for a response
or the ”planning” side? Or do the two need to cooperate and how
much? When should the activity planner abandon or preempt the
current goals? Should the task planner repair a plan or replan from
scratch? Should the executive adjust its current policy, switch to a
new one, or learn a new policy from more relevant experience?

The fifth edition of the workshop on Integrated Planning, Acting,
and Execution (IntEx) aims to provide a forum for discussing the
challenges of integrating online planning, acting, and execution, and to
assess the potential for holding an integrated execution competitions
at ICAPS. Topics include:

• online planning, acting, and execution improving planning per-
formance from execution experience
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• anytime or incremental planning

• discussions of plan dispatching or plan executives

• execution monitoring; comparing replanning, plan repair, re-goaling,
plan merging

• managing open worlds with closed-world planners

• model learning from experience

• determining an observation policy; policy switching; incremental
policy adjustment

• modelling, languages and knowledge engineering for interleaved
planning and execution

• architectures and application for integrated planning and execu-
tion, execution

• monitoring, mixed-initiative on-line re-planning and execution

Sunandita, Mak, Wiktor, Tiago
IntEx 2021 Organizers
August 2021
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Abstract
Robotics opens the possibility for safer operations in remote
and hazardous environments, with multiple robots deployed
to perform tasks that would otherwise present risks for hu-
man operators. However, these missions must be carefully
planned and monitored to ensure their successful completion
while keeping human supervisors in the loop for accountabil-
ity. While many tools have been developed to tackle individ-
ual aspects of such processes, there are few systems combin-
ing plan development, review, and supervision in one frame-
work. This paper proposes a mission planning framework de-
signed for remote operations and integrating the following
features: a user-friendly problem editor, a task-allocation al-
gorithm, visual plan inspection, digital-twin progression re-
ports, and plan deviation analysis. We show how this system
is designed to support non-technical users with planning ac-
tivities. In particular, the system provides continuous feed-
back on plan performance, comparing predictions with real
implementations, enabling users to improve the requirements
for future missions and correct modelling assumptions.

Motivation and Introduction
Robotic platforms provide the potential for safer operating
solutions in remote and dangerous environments that would
otherwise put human workers at risk (e.g., search and rescue
in disaster zones or maintenance of offshore energy plat-
forms). The development of such solutions typically faces
two constraints. First, the uncertainty associated with haz-
ardous environments often limits the practicality of deploy-
ing fully autonomous systems, e.g., cluttered and unstruc-
tured legacy installations, rapid weather changes, etc. As
such, for safety and accountability reasons, the oversight of
a human supervisor becomes necessary. Second, the remote
settings for such missions often necessitate a variety of ad-
vanced robotic capabilities that must be highly coordinated
to accomplish complex tasks, e.g., inspection and manipula-
tion capabilities in ground, aerial, and subsea domains. As
a result, robots are not only expected to coordinate and col-
laborate with each other, but must also be robust enough to
support long-term autonomous operations where direct hu-
man interventions are impractical.

This paper proposes a mission planning framework de-
signed for remote operation that integrates the following fea-

*The first two authors have equal contribution.

tures: (i) user interfaces to facilitate the development and
monitoring of remote missions by human supervisors, and
(ii) robust AI planning solutions for heterogeneous multi-
robot systems that implement intelligent behaviour in dy-
namic environments. The benefits of this framework are
two-fold: it provides an intuitive end-to-end mission plan-
ning and execution system with human end users in mind,
and accommodates the capture of offline and online perfor-
mance data to enable planning experts to enhance model ac-
curacy, system adaptability, and plan optimisation.

Our contribution is a symbiotic framework (see Figure 1)
between mission specification, mission planning, and mis-
sion monitoring, each aiding the others and leading to a
more user-friendly approach for remote planning. None of
the individual modules, nor a trivial integration of them all,
provides the same functionality. Our work presents newly
developed features: (i) the design and development of the
Problem Editor interface, fully linked with high-level plan-
ning; (ii) the extension of the planner to support offline and
online mission planning in favour of enhanced accuracy and
on-the-fly plan re-definition; and (iii) the introduction of a
Plan Deviation Analysis which supports long-term missions
and unexpected changes in the environment. Overall, the
proposed framework enables non-expert users to plan mis-
sions in complex environments, which, as we believe, consti-
tutes a robust system of interest to the planning community.

The rest of this paper is organised as follows. We first sur-
vey previous work related to the development of end-to-end
planning frameworks. We then give an overview of the sys-
tem before expanding on its five major components in detail.
We finally conclude with remarks on future development.

Related Work
We begin by reviewing the literature regarding systems that
address the problem of planning with human oversight and
robust autonomous execution. This survey first considers
human-in-the-loop systems, then focuses on planning tech-
niques. We then present how these components have been
integrated into several ambitious projects over recent years.

Keeping humans involved in automated processes has
been recognised as a beneficial approach for optimisation
(Scott, Lesh, and Klau 2002), notably for the ability to use
up-to-date local knowledge to complement automated mod-
els (Fraternali et al. 2012).
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Figure 1: Overview of our planning framework. The approach is designed around 3 user tasks: mission development, plan
review, and execution supervision. We integrate 5 components in the framework: problem definition, high-level task planning,
visual plan inspection, remote mission monitoring, and plan deviation analysis.

With regard to planning systems, there have been many
systems developed to assist in the generation of plans. The
most common approach has been the implementation of
graphical editing tools for domains and problems using
node-link diagrams (Hatzi et al. 2010; Vodrázka and Chrpa
2010). Vrakas and Vlahavas (2003) also include an inter-
face assisting users in defining problems for predefined do-
mains. These techniques have been widely applied within
larger planning systems such as EUROPA (Barreiro et al.
2012), GIPO (McCluskey and Simpson 2006), ModPlan
(Edelkamp and Mehler 2005), and itSIMPLE (Vaquero et al.
2007). It is also common to provide users with a graphical
depiction of generated plans for review. For example, (Kim
and Blythe 2003) reuse the node-link diagram representa-
tion to describe and provide explanations for plan actions
and their components. The PlanCurves technique visualises
plans and enables the exploration of interactions between
multiple robots (Le Bras et al. 2020).

It is also crucial for users to monitor the progress of
plan execution, to check the completion of tasks against the
schedule, and provide commands to rectify exceptions. For
example, (Bernardini et al. 2020) propose to integrate both
planning and monitoring interfaces in their onshore control
centre. Relevant work in the area of Explainable AI Planning
(XAIP) proposes a framework that utilises the existing plan-
ners to assist in answering contrastive questions (Cashmore
et al. 2019) showing effectiveness explaining plan solutions
for safety-critical domains. To optimise context awareness,
such monitoring interfaces must portray agents executing
plans within the environment, for example by overlaying
their positions on a map (Cummings et al. 2019). The in-
tricacies of offshore installations, however, require the sys-
tem to render a more accurate depiction of the environment.
The ORCA Digital Twin system is an example of a detailed
monitoring interface, allowing users to navigate through a
3D simulation while robots are shown to be executing mis-
sions (Pairet et al. 2019).

AI temporal planners such as OPTIC (Benton, Coles,
and Coles 2012) and POPF (Coles et al. 2010) often lack
high-quality task distribution in the generated plans, when
planning for multiple robots (Carreno, Petillot, and Petrick
2019). This is the result of their search strategies which

focus on satisfying propositional action preconditions first
and then action scheduling. Hence, further work has been
done to find solutions that improve performance: (Bernar-
dini et al. 2017, 2020), for example, use the POPF-TIF sys-
tem (Piacentini et al. 2015). This general-purpose planning
technology supports required concurrency, metric variables,
predictable exogenous events and external advisors. How-
ever, this approach does not focus on the optimisation of
task allocation for heterogeneous multi-robot systems. The
MRGA+TP approach (Carreno et al. 2020) instead favours
reasoning about the task allocation problem using the OP-
TIC planner which enables the introduction of preferences
in the planning problem. In this work, we explore the poten-
tial of combining task allocation and AI temporal solvers.

In the past decade, AI planning techniques have been
combined in human-in-the-loop systems to achieve solutions
to challenging robotic problems. Examples of such projects
include JAMES (Foster et al. 2012), SWARMs (Real-Arce
et al. 2016), ORCA (Hastie et al. 2019), and MIMRee,
(Bernardini et al. 2020), among others. The JAMES project
used AI planning for socially-appropriate interaction using
a single robot. Our main target is multi-robot systems. More
closely related to our work are the SWARMs and MIMRee
projects. The first, focused on coordinating cooperative be-
haviours in multi-vehicle (underwater) missions. SWARMs
explores the areas of task allocation and scheduling, pre-
senting solutions that include genetic algorithms and tem-
poral planning. MIMRee uses AI agent technology to coor-
dinate heterogeneous robotic assets while cooperating with
onshore human operators who supervise the mission at a dis-
tance, via the use of shared deliberation techniques. While
we also consider such goals in our work, our approach dif-
fers in a number of significant ways and can be applied to
a wider range of applications in extreme environments: our
approach is not domain-specific, it incorporates a plan de-
viation analyser to achieve robustness while executing mis-
sions, and we provide a tool to acquire data associated with
planning and execution performance to enhance model accu-
racy, system adaptability, and plan optimisation over time.
Our work is being developed in the context of the ORCA
project, which considers similar deployment environments
to MIMRee, including offshore energy applications.
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System Overview
The application domain motivating our work centres around
the automation of inspection and basic maintenance tasks
on offshore energy installations, including legacy carbon de-
commissioning and maintenance of renewable resources. In
these remote and hazardous environments, the implemen-
tation of robotic systems provides safer conditions for the
completion of missions.

As such, we designed our framework for remote planning
around three major stages of robot deployment:

1. Development of the mission specifications, defining
goals and available resources to edit problem definitions
and generate plans;

2. Review of the proposed plan, ensuring its safety and ad-
equacy with the user’s up-to-date knowledge and propos-
ing updates to the problem if needed; and

3. Supervision of plan execution, assessing plan deviation
and guarantees concerning mission success.
Five components1 are integrated to help users fulfil these

tasks (see Figure 1). First, we developed a graphical prob-
lem editor, allowing users to edit goals and preferences and
to select the robots to use for missions based on a model
of the domain. We use a high-level task planning system
to allocate the appropriate robots to goals and generate the
mission plan. The plan is then presented using a visual plan
inspector, enabling users to visually inspect the plan, query
details of it if necessary, and approve its execution. Users can
then follow the mission progress on a remote mission mon-
itoring interface, tracking the robots’ movement within the
environment in detail. Simultaneously, the plan deviation
analysis reasons about changes between the scheduled tasks
and the robots’ progress in real-time, querying the planner
for adjustments when needed. We present these components
in more detail in the following sections, detailing their inner
structure and how they communicate with one another.

Problem Definition
The task of defining the problem is the starting point for any
mission. Our framework distinguishes between two problem
statements: system predicates, which do not change from
one mission to the other (e.g., the distance between way-
points), and user predicates, that users may update for spe-
cific missions (e.g., robot starting points). To support both
types of statements, our system first uses a domain model
that defines the system predicates and the structure of user
predicates. A problem editor interface then uses these struc-
tures to assist users in defining their statements.

Domain Model: We model three aspects of the domain: the
environment (including waypoints, a neighbourhood graph,
and objects), the robots (with their capabilities and fluents,
e.g., speed or battery level), and finally the structures for
goals and preferences. Figure 2 presents examples from our
model. While some aspects of the model are domain-specific

1In https://github.com/plebras/PlanVisualisationLive we
present the framework’s components linked to the Development
and Review stages.

Environment Model:
waypoints:

{name:wpg0, coordinates:[22,14,0],

neighbors:[wpg2], type:ground}, ...

objects:

{type:valve, position:wpg35}, ...

Robots Model:
{name:robot0, type:ground, *position:wpg0, *energy:100,

*available:true, recharge_points:[wgp0], speed:0.5,

capabilities:[can_turn_valve,...], ...}, ...

Goals and Preferences Model:
goal types:

{name:valve_inspected, parameters:[valve]},
{name:image_captured, parameters:[waypoint]}, ...

preferences types:

{name:within, goals:[number,predicate]}, ...

preferences predicates:

{name:at, type:state, parameters:[robot,waypoint]},
{name:energy, type:function, parameters:[robot]}, ...

Figure 2: Excerpts from the JSON Domain Model. The en-
vironment model defines waypoints and objects. The robot
model describes features and capabilities; fields with an *
can be edited on the problem editor. The goals and prefer-
ences model describes their structures, and allows the editor
to assist users when defining such statements (see Figure 3).

(e.g., environment data), the system architecture offers scal-
ability to augment the domain in future development or en-
sure reusability across different domains. The modularity of
this architecture, therefore, allows our work to be deployed
onto any platform (real or simulated) and supports different
domains to cope with new operational characteristics. In this
paper, we present a domain and problems well-aligned with
real-world applications, provided by ORCA-Hub’s indus-
trial partners. These components have been improved over
time considering industrial experiences and necessities. We
have used this system architecture to solve problems at dif-
ferent scales, increasing the number of robots and permuting
their capabilities.

Problem Editor: We base our problem editor interface on
Vrakas and Vlahavas’s work (2003), assisting the user in
creating three types of statements split in three lists (see Fig-
ure 3). The first one determines the set of available robots for
the mission (Figure 3B). The user can select which robots to
include in the plan and define their starting point and initial
charge. The second is the list of goals for the mission (Fig-
ure 3C). While initially empty, the editor will use the do-
main model data to create an interactive form for the user to
add goals. Similarly, the user can add constraint preferences
to the third list (Figure 3D), providing decisive support for
querying a plan with specific characteristics, such as main-
taining a minimum charge level or pushing a robot towards
a particular path, notably after having reviewed a previous
plan that did not meet the user’s expectations. Upon sending
the user predicates to the back-end for planning, the domain
model saves these statements in case the user decides a dif-
ferent plan is needed.
Once instructed to generate a plan via the problem editor in-
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Figure 3: The problem editor interface. The control panel (A) allows users to load a domain and trigger planning and execution.
The editor displays 3 lists: robots (B), goals (C), and preferences (D). For the latter two, the interface guides users into adding
elements using the domain model data (top of lists); the properties already added are also visible to the user (bottom of the list).

terface, the system performs two actions. First, it saves the
user-defined statements for future potential replanning. Sec-
ond, it compiles the domain model and user-defined state-
ments into a set of problem files, from which the high-level
task planning processes can proceed.

High-Level Task Planning
The high-level task planning architecture is responsible for
task allocation and task planning, taking into account all
available information about system properties (e.g., domain
models, physics, etc.) and mission specifications (e.g., goals,
constraints, etc.). The system uses a Task Assignment (TA)
component to allocate tasks to a set of robots and a Central
Temporal Planner (CTP) to generate a plan solution. Here,
we describe the key characteristics of these two elements.

Task Assignment: The task assignment component in our
strategy is based on the MRGA approach (Carreno et al.
2020). TA is responsible for allocating mission goals to a
fleet of multiple heterogeneous robots before planning. This
method considers two cost functions to allocate goals: (i)
the number of solvable tasks based on the robot capabili-
ties, and (ii) the linear combination of the task makespan,
the distance between the points of interest (POIs) and re-
dundancy of the robot’s sensory system. TA aims to op-
timise the distribution of robots in the environment to re-
duce mission time and avoid worst-case scenarios where all
goals are allocated to a single robot. However, robots can im-
plement tasks in different parts of the environment by con-
sidering goal capability requirements and robot capabilities
(e.g., the ability to inspect a region, manipulate a valve, etc.).
We claim this method improves plan solutions presented by
benchmark temporal planners. The approach is planner ag-
nostic, with the output of TA described in standard Plan-
ning Domain Definition Language with temporal constraints
PDDL2.1 (Fox and Long 2003). The high-level task plan-
ning approach has been evaluated using a large number of
temporal solvers (Carreno et al. 2020) supported by PDDL.

Current system evaluations have not considered other plan-
ning languages such as RDDL (Sanner 2011). Task alloca-
tion distributes tasks by analysing robot and mission charac-
teristics. The approach first evaluates the capabilities of each
robot and the capabilities required to implement each goal
to allocate the set of solvable tasks to appropriate robots. It
then works to define regions where the goals are allocated
using clustering methods. The number of designated regions
is always equal to the number of robots available. Robots are
distributed in the regions by considering the number of tasks
they can implement in each cluster and the distance that sep-
arates them from the closest goal in each cluster. At the end
of this process, each robot will have a goal allocated. The
distribution of robots in the environment leads to the remain-
ing tasks being allocated by considering task makespan, the
distance between the robots and tasks, and the redundancy
of the sensory system to execute critical tasks. Note that the
robots are not tied to a single region; they can freely move if
required to complete mission tasks.

The final (allocated tasks) set is then transformed into a
set of PDDL instances of the fluent (robot can act ?r -
robot ?wp - poi) which is defined in our domain. The
PDDL domain constraints the implementation of the differ-
ent actions in the environment to the appropriate robots that
can work at different POIs. The decision of who is capable of
executing a particular task depends on the TA reasoning. The
set of instances of the fluent is added to the PDDL problem
file with all other system specifications and therefore they
are considered to generate the plan. Figure 4 (top) shows a
set of instances generated by the TA which constraints the
execution of tasks in different POIs to the robots that can
act in these locations. We use this representation to gener-
ate plans using the benchmark planners. In this case, the
introduction of the TA means the AI temporal solver does
not deal with the task allocation problem directly, which re-
duces the planning times and improves the final plan solu-
tion. However, the flexibility of this system allows the user
to decide over the task allocation if that is desirable. In this
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Problem Instances:
(robot_can_act husky1 wpg52)

(robot_can_act husky0 wpg31)

(robot_can_act uav0 wpa35)

(robot_can_act husky1 wpg35)

(...)

Temporal Plan Solution:
Time: (Action Name) [Duration]
0.000: (navigation husky1 wpg1 wpg52) [166.348]

0.000: (navigation husky0 wpg0 wpg31) [115.181]

0.000: (navigation uav0 wpa0 wpa35) [111.496]

115.182: (valveInsp husky0 camera_h0 wpg31) [50.000]

166.349: (checkP husky1 p_analyser1 wpg52) [20.000]

186.350: (navigation husky1 wpg52 wpg35) [81.687]

268.038: (valveInsp husky1 camera_h1 wpg35) [50.000]

318.039: (manValve husky1 uav0 wpg35 wpa35) [30.000]

(...)

Figure 4: A fragment of the set of PDDL instances (top)
generated by the TA. A temporal plan solution (bottom) for
a set of huskies and a UAV in the environment.

case, the near-to-optimal task distribution considering goals
and robot fleet characteristics is not a guarantee.

Central Temporal Planner: The planning module is re-
sponsible for generating plans that links a robot’s actions
with the implementation of goals previously assigned to it
by the TA component. Missions are created by considering
robot capabilities and the characteristics of the environment.
This module interacts with other modules (TA and the en-
vironment) to obtain a world model that provides informa-
tion about the robot states, capabilities, and information of
the operating environment (e.g., distance between the POIs
and map of possible refuelling points, etc.). Such informa-
tion is used to generate domain and problem descriptions2

in PDDL. The task planner uses mission knowledge to gen-
erate a plan which satisfies the goal allocation restrictions
imposed by the TA component. Plans are built using the OP-
TIC planner which shows good planning performance in a
large number of domains, with domain-independent heuris-
tics and fast generation. The quality of the plan is determined
by the metrics the user needs to optimise. The most standard
is the minimisation of the makespan—the time that elapses
from the start of plan implementation to the end. However,
the OPTIC planner allows considering preferences and time-
dependent goal costs.

Figure 4 (bottom) shows a fragment of a plan solution
that involves two instances of Husky robot and a UAV (Un-
manned Air Vehicle). The user requires the robots to (i)
inspect (valveInsp), (ii) manipulate a valve (manValve)
in the environment, and (iii) check the pressure of a boiler
(checkP) in its digital panel. The UAV implements surveil-
lance tasks to provide visual information to the user. The
CTP takes as inputs the PDDL and problem files to gener-
ate a solvable plan. The plan’s solution takes into account
the TA output. For instance, TA evaluates husky1 is the

2In https://github.com/YanielCarreno/MRGA we present Task
Allocation algorithm and the domain and problems used in this
work (folder ICAPS-IntEx 2021).

best robot to implement tasks in wpg52. Therefore the plan-
ner is restricted to find a solution where the action associ-
ated with checking the pressure of the boiler (checkP) is
executed by husky1. The introduction of the High-Level
Task Planning is fundamental to achieve a sequence of ac-
tions that leads a set of heterogeneous robots from an ini-
tial state to a goal state. The planning solution responds
to a set of requirements the user presents to the system
including goals and constraints (e.g., temporal, resources,
etc.). As a result, the High-Level Task Planning provides
an executable solution that can be analysed and visualised
by the user in order to decide its implementation. In this
work, we assume each goal is a single task. However, it
does not impede the system to implement coordinated ac-
tions. For instance, action manValve requires a Husky and
a UAV. The TA finds the best robots to execute the goals
valve manipulated wpg35 (that require a Husky) and
valve inspected wpa35 (that requires a UAV), which
are effects of executing the same action. Using our cen-
tralised planning approach we deal with these types of de-
pendencies allowing the robots to coordinate their efforts.
In addition, the CPT supports reasoning regarding mission
survivability dealing with mission numeric constraints. For
instance, the actions associated with the battery recharge are
introduced by the planner that keeps robot operation require-
ments in consideration when planning.

Visual Plan Inspection
While the task planning processes will optimise the allo-
cations of robots and ensure the plan safety, human super-
visors will still be held accountable for the safe and effi-
cient progress of the mission. Thus, it is necessary to provide
them with means to assess the plan generated for them. We,
therefore, integrated the visualisation system introduced by
(Le Bras et al. 2020). This approach displays plans in three
coordinated views (see Figure 5).

Activity Chart: The activity chart follows a common repre-
sentation for planned tasks: Gantt charts. It displays sched-
uled tasks as horizontal bars, positioning them to reflect their
timing and duration (Figure 5C). In this interface, activities
are grouped by robots to highlight their individual roles in
the plan. It also connects tasks that are meant to be per-
formed in coordination (e.g. one robot manipulating an ob-
ject and another robot recording the action). This visualisa-
tion is built directly from the plan data (i.e. the list of ac-
tions).

Scene Map: While the activity chart displays the planned
actions in detail, our domain of application (offshore en-
ergy) often includes unstructured legacy installations and in-
volves unpredictable environment factors (e.g. rapid weather
changes). It becomes, therefore, necessary for the user to
also inspect the planned robots’ movements and possible in-
teractions, and assess their safety. To address this issue, the
scene map visualisation shows a top-down view of the envi-
ronment and simulates the position of robots within it, with
the robots’ elevation shown on the left (Figure 5D). Panning
the activity chart or selecting states on the time curve update
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Figure 5: Screenshot of the plan visualisation interface. The plan is shown as: time curves (A) to give an overview of the
distances between robots across the plan, sliders (B) that allow the tuning of dimensions’ weights to view multi-dimensional
interactions from different perspectives, an activity chart (C) for detailed task schedule and robot coordination, and a map view
(D) for details on the robots’ positions.

the timeframe shown on the scene map, effectively animat-
ing it.

Time Curves: The two previous visualisations address the
two main requirements for plan inspection: assessing the
robots’ tasks and movements. On offshore installations,
however, there are situations when missions are made in re-
sponse to emergencies. As such, the plan assessment, no-
tably for movements, needs to be quick. From the list of ac-
tions described in the plan, the system will automatically
infer the set of robot states throughout the mission, each
with spatial and temporal coordinates. To enhance accuracy,
the system will also estimate states every 20-time units if
such interval is originally missing. The time curve visuali-
sation technique (Bach et al. 2015) proposes to marginalise
the multi-dimensional distances between states (three spatial
and one temporal) down to two dimensions (Figure 5A). As
a result, it creates a set of timelines (one per robot) distorted
to reflect the closeness of robots both spatially and tem-
porally. Note that the resulting chart expresses the robots’
states in two abstract dimensions: the composites best pre-
serving the original multi-dimensional distances. It is, there-
fore, impossible to label or interpret the axes of time curves,
however, we introduce a posterior manipulation to “correct”
the general orientation of curves, from left (start) to right
(end).

This representation allows users to get a quick overview
of the planned movements for robots and make rapid sense
of their potential interactions. The weights of dimensions
towards the time curves projection can be controlled using
sliders, allowing the user to query details (Figure 5B). If the
user decides the plan is not suited for the mission, the system
allows them to return to the problem editor interface, where
robots, goals, and preferences can be adjusted. Once content
with the plan generated for the mission, the user may trigger
its execution and monitor mission progress remotely.

Remote Mission Monitoring
We contextualise our work in the implementation of mis-
sions in remote and hazardous zones. Plan execution has
been mainly evaluated in simulation scenarios using our
ORCA-Hub simulator (Pairet et al. 2019). Our simulator is
a ROS-enabled offshore energy platform environment com-
posed of four gas and oil tower sites. Figure 6 shows a top
(left) and field (right) view of the environment. The simu-
lator supports the simultaneous deployment of multiple in-
stances of robotic platforms, thus enabling a wide range of
capabilities for cooperative inspection of large areas and
emergency response. In this work, we employ UAV (ideal
for aerial inspections) and Husky robots (medium-size robot
with large payload capabilities, capable for example of ex-
tinguishing a fire) to implement missions that require to-
tally decoupled as well as coordinated tasks. Figure 6 (right)
shows a set of robots executing the plan presented in Fig-
ure 4 which involves tasks that require different sets of ca-
pabilities.

The simulator allows the user to evaluate the performance
of the multi-robot system when executing the mission plan.
This system provides a semantic description of the offshore
energy structure, i.e., a map from 3D coordinates to high-
level labels, which bridges the human-robot communication
gap. Moreover, to ease some of the inherent robotic chal-
lenges, the simulator provides a semantic road map for au-
tonomous point-to-point navigation and collision-free plan-
ning. Figure 6 (left) shows a representation of these points in
the ground floor and the possible direction of navigation that
robots can take. The POIs defined in our PDDL problem are
directly aligned with the set of points in the road map. For
instance, the high-level POI wpg1 is defined by:

[x, y, φ, roadmap poi name, poi property],

where x, y and φ is the robot position and heading,
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Figure 6: Overview of the simulator scenario with multiple
aerial and ground robots executing a mission plan. The view
of the platform shows the possible navigation paths.

poi property provides relevant location information (e.g.,
goal location, recharge point, etc.), and roadmap poi name
is the semantic tag of wpg1 in the roadmap (e.g., SE out 2).
This information enables high-level task planning to be con-
nected to the simulation execution tools. Therefore, if a plan
action asks a robot to navigate from wpg1 to wpg52 the
simulator makes use of the roadmap poi name variable to
query the roadmap for a path that connects both points.

The simulator supports Human-Robot-Interaction (HRI),
including remote interaction with the robotic platforms
through natural language commands and can receive vehi-
cle and mission status through natural language such as in-
spect the valve1. However, this work does not directly use
this type of single-action command implementation. Instead,
we are interested in leveraging the strength of AI planning
solutions to interact with multiple robots in the environment
to solve long-term missions with a large number of goals.
Moreover, the robots can reason about additional actions in
the plan which are not directly related to achieving a goal.
For instance, the plan solution can contain actions related to
recharging the robot’s battery, which is not a mission goal,
but still fundamental for successful mission execution.

Overall, our simulator provides a comprehensive platform
for developing and supporting HRI techniques, to aid in
building human-robot trust in high stakes scenarios such as
emergency response. It also enables testing of task plan-
ning algorithms for cooperative inspection and long-term
autonomy, and human-guided supervision and control of the
robotic assets from remotely located control stations. Being
able to exhaustively test these applications ensures the co-
herence and efficiency of the execution plans, thus increas-
ing the likelihood of adoption of robotics and autonomous
systems for high-risk environments.

Planning and Execution
Robustness is a fundamental requirement for the success
of complex robotic missions in extreme environments, re-
quiring the consideration of mission failures, adaptability
and survivability. Figure 7 shows a general description of
the three elements involved in the mission implementation:
Planning Framework (PF), Planning Execution Framework
(PEF), and Plan Deviation Analyser (PDA). This architec-
ture is an extension (grey components represent the addi-

Figure 7: Framework for offline-online plan generation and
execution. The system presents three main parts: Planning
Framework (PF), Plan Execution Framework (PEF) and Plan
Deviation Analyser (PDA).

tions) of ROSPlan (Cashmore et al. 2015). Here, we did not
mention the users, considering this process occurs when they
decide the plan obtained in the Development and Review
phases (see Figure 1) can be executed. However, in the Su-
pervision phase, the user can decide to stop the mission and
replan it. In this section, we aim to describe the processes of
plan dispatch, execution, and replanning in case of failures.
We consider the system can adapt to a set of mission failures.
Therefore, we evaluate the system’s ability to overcome un-
expected situations as a consequence of using an incomplete
domain model.

The PF encloses the process of generating a plan solu-
tion. The planner produces plans using a domain model and
a problem which are inputs to the Knowledge-Base (KB). As
a result of using the PF we have a parsed plan available to be
executed. The PEF dispatches the plan to a set of robots us-
ing the Plan Dispatch and Action Dispatch components from
ROSPlan. The robotic platforms receive the actions through
the action interface and provide feedback on the execution.
If the action is successfully completed the next action in the
plan is dispatched. If an action fails, however, further action
dispatches are cancelled.

Plan Deviation Analysis: Our system introduces the PDA
framework which can be used in two different cases:

• Case 1: There is a failure associate with the implementa-
tion of the action that makes the PEF to cancel the Plan
Dispatch and claim replanning.

• Case 2: The Performance Detection component of the
PDA detects possible problems during the execution of
the action and interacts with the system to deal with them
at the execution time.

In Case 1, the PDA takes the information the plan fails
without completing all mission goals. The system checks the
action that fails and queries the KB to evaluate possible rea-
sons that guarantee the new plan solution is solvable. For
instance, a Husky lost track of the image reconstruction of a
structure while it is mapping an area. The PDA will consider
the last location the quality of the map was acceptable and it
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Figure 8: Makespan performance (offline) and real mission execution times (online) for 20 problem instances over 100 experi-
ments (left). Makespan performance for different battery thresholds (right) for 10 problem instances over 50 experiments.

will add this information to the KB; based on the feedback
from this evaluation, the system decides the next step. In ad-
dition, the PDA will evaluate other required preconditions to
execute actions that were removed from the KB during ex-
ecution and add them. For instance, if action navigate re-
quires knowing the robot location (precondition robot at
?r - robot) the PDA adds the robot’s actual location to
the KB before calling the planner to replan.

In Case 2, replanning is not needed. The PDA aims to
observe the execution of particular actions and identify pos-
sible problems that might force the system to replan in the
future. For instance, a Husky navigates from wpg1 to wpg52
and the navigation is delayed, as a consequence, the robot
took longer to reach the second floor (wpg52 location). The
PDA can suggest the Husky to increase the speed to com-
plete the action in the required time. These suggestions will
depend on the action and robot characteristics that are de-
fined in the Mission Ontology (MO). This type of online so-
lutions makes robots adapt their behaviour while executing
the plan avoiding the need for replanning. The MO is pop-
ulated with multiple properties associated with all actions.
Therefore, we can have a set of propositions to deal with
failures associated with domain actions.

Performance Evaluation: Our framework can store data re-
lated to (i) offline planning, (ii) online planning, (iii) ex-
ecution, and (iv) sensing information. This data includes
mission goals; actions failures; planning time; makespan
(at planning time and during the execution); and data as-
sociated with the sensors involved in the mission. Figure 8
shows examples of the results the framework can present.
The first, shows the makespan performance and mission ex-
ecution times for a set of 20 missions (some of them can take
a day approximately). Results exhibit the execution times
differ from the plan makespan originally obtained in a set
of missions. The acquisition of this information over time
allows planning experts to enhance model accuracy, system
adaptability, and plan optimisation. Figure 8 (right) shows
execution performance for the first 10 missions considering
the Husky needs to recharge for different battery levels (bat-
tery life ∼ 5 hours and recharge time ∼ 2 hours). These re-
sults indicate best performance is obtained when the thresh-
old for recharging is 40%. For 60% makespan increases sub-

stantially and for 20% and 30% the planner cannot solve all
missions. However, we can use these small values to execute
certain problems (e.g., 1 and 2) as the execution times are re-
duced as a result the Husky does not need to recharge. This
information can be useful to the user to define which is the
best time to recharge the battery of the robots to avoid un-
expected situations where robots fail to maintain long-term
operations. This project leads to a set of new autonomous so-
lutions for extreme environments. Our framework supports
the plan’s evaluation considering industry-standard metrics
such as implementation times and mission survivability.

Conclusion and Future Work
In this paper, we presented an end-to-end framework for
planning and executing remote missions for multiple coor-
dinated heterogeneous robots. Our system targets two main
goals: providing oversight capabilities to human operators
for safety and accountability while ensuring a robust im-
plementation of long-term autonomous activities. In partic-
ular, the system is designed around three mission stages:
plan generation, plan inspection and plan monitoring during
mission execution. Overall, the proposed framework enables
non-expert users to plan missions in complex environments
which, we believe, constitutes a robust system for integrat-
ing AI planning solutions in industrial applications.

As future work, we are considering some additions to this
framework. While our plan deviation analysis provides an-
swers to exceptions occurring during execution, integrating
contingencies into the plan generation process would also
provide additional benefits reducing the amount of replan-
ning needed during mission execution, and redefining mis-
sion goals or preferences by considering contingent plans. A
second addition to our framework would be to implement an
interface for users to visualise the performance of previous
missions. Such a tool would allow planned activities to be
analysed and compared against the reality of execution, un-
derstand the pitfalls or strengths of past missions, and make
better judgements when developing new plans.
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Abstract

Agents that plan and act in the real world must deal with the
fact that time passes as they are planning. When timing is very
tight, there may be insufficient time to complete the search
for a plan before it is time to act. By executing actions before
search concludes, one gains time to search by making plan-
ning and execution concurrent. However, this incurs the risk
of making incorrect action choices, especially if actions are
irreversible. This tradeoff between opportunity and risk is the
metareasoning problem addressed in this paper.
We begin by formally defining this as an abstract metarea-
soning problem, and setting it up as an MDP. This abstract
problem is itself intractable. We show special cases that are
solvable in polynomial time, present heuristic solution algo-
rithms, and examine their effectiveness on instances gener-
ated according to distributions that represent typical planning
problems.

1 Introduction
Agents that plan and act in the real world must deal with
the fact that time passes as they are planning. For example,
an agent that needs to get to the airport may have two op-
tions: take a taxi, or ride a commuter train. Each of these
options can be thought of as a partial plan to be elaborated
into a complete plan before execution can start. Clearly, the
agent’s planner should only elaborate the partial plan that in-
volves the train if that can be done before the train leaves. In
another example, suppose the planner has two partial plans
that are each estimated to require five minutes of compu-
tation to elaborate into complete plans. If only six minutes
remain until they both expire, then we would want the plan-
ner to allocate almost all of its remaining planning effort to
one of them, rather than to fail on both. An abstract model
for handling these issues [called Allocating Effort when Ac-
tions Expire (AE)2] was proposed in (Shperberg et al. 2019),
and is the basis for the research presented in this paper.

Now, suppose further that the estimated time to complete
each plan is seven minutes, that the planner has already de-
termined that the first action in the commuter train plan is
to ride the elevator down to the first floor, which takes two
minutes, and that the first action in taking a taxi is to call

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for a taxi (two minutes) which cannot be done while rid-
ing the elevator, which has no cellphone reception. The only
apparent way to plan successfully thus involves starting to
act before planning is complete. However, doing so may in-
validate potentially valid plans. This paper proposes a disci-
plined method for handling such tradeoffs.

The idea of starting to perform actions in the real world
(also known as base-level actions) before completing the
search goes back at least as far as Korf’s (Korf 1990) real-
time A* (RTA*). The difference from the RTA* paradigm is
that our scenario is more flexible; the agent does not have a
predefined time at which actions must be executed. Rather,
it must reason about when base-level actions should be ex-
ecuted in order to maximize the probability of successful
and timely execution. Note that we assume here that the
world is deterministic, the only uncertainty we model here
is at the meta-level, due to uncertainty about how long plan-
ning/search will take and about the time it will take the (un-
known at search time) resulting plan to reach a goal state.

In this work we define the above tradeoffs as a formal
problem of decision-making under uncertainty, in the sense
defined by (Russell and Wefald 1991). Attempting to do so
for an actual planning or search algorithm is far too com-
plicated, even under our assumption of a deterministic real
world. We thus adopt the aforementioned (AE)2 scheme,
which defined an abstract metareasoning problem of allocat-
ing processing time among n search processes, and extend
it to allow execution of actions in the real world (which, fol-
lowing (Cashmore et al. 2018), we call base-level actions),
in parallel with the search processes.

The formal problem presented in this paper, called inter-
leaving planning and execution when actions expire (IPAE
for short), assumes that each process has already computed
a known (possibly empty) prefix action sequence, the initial
actions in the solution, and that there is an as-yet-unknown
remainder of the action sequence to be executed. A distri-
bution over the length of the remainder is given. The metar-
easoning problem we define is as in (AE)2, to find a policy
that maximizes the probability of a timely action sequence.
However, unlike (AE)2, in our extension the agent can actu-
ally start executing base-level actions (from one or more of
the action sequence prefixes) in parallel with continuing the
computation.

We then show that IPAE is a generalization of (AE)2, and
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is thus also intractable, even under the very limiting assump-
tion of known deadlines and remainders. Still, we cast IPAE
as an MDP, so that we can define and analyze optimal poli-
cies, and even solve IPAE optimally for very small instances
using standard MDP techniques like value iteration.

We describe several efficient ways of solving IPAE, al-
though not necessarily optimally, and evaluate them empiri-
cally. In this paper, we examine only the one-shot version of
the metareasoning problem. Integrating this into a temporal
planner or search algorithm can involve solving this problem
repeatedly, possibly after each node expansion, in addition
to gathering the requisite statistics. These issues are ongoing
work and beyond the scope of the current paper. When test-
ing our algorithms, we use scenarios based on search trees
generated by running A* on sliding tile puzzle instances.

2 Background: Metareasoning in Situated
Planning and Search

In situated temporal planning, each action a has a latest
start time ta and a a plan must be fully generated before
its first action can begin executing. This induces a deadline
(although this deadline may be unknown, since the actions
in the plan are not known until the search terminates).

For a partial plan available at a search node i in the plan-
ner, this can be modeled by a random variable di, denoting
the unknown deadline by which any potential plan expanded
from node i must be generated. Thus, the planner faces the
metareasoning problem of deciding which nodes on the open
list to expand in order to maximize the chance of finding a
plan before its deadline.

Shperberg et al. (2019) proposed a model of this problem
called (AE)2 (‘allocating effort when actions expire’) which
abstracts away from the planning problem and merely as-
sumes n independent processes. Each process attempts to
solve the same problem under time constraints. In the con-
text of situated temporal planning using heuristic search,
each process may represent a promising partial plan for the
goal, implemented as a node on the open list eager to have
its subtree explored. But the abstract problem may also be
applicable to other settings, such as algorithm portfolios or
scheduling candidates for job interviews. For simplicity, we
assume a single processor, so the core of the metareasoning
problem is to determine how to schedule the n processes on
the single processor.

When process i terminates, it delivers a solution with
probability Pi or, otherwise, indicates its failure to find one.
An mentioned above, each process has an uncertain deadline
defined over absolute wall clock time by which its computa-
tion must be completed in order for any solution it finds to
be valid. For process i, let Di(t) be the CDF over wall clock
times of the random variable denoting the deadline. The ac-
tual deadline for a process is only discovered with certainty
when the process completes. This models the fact that a de-
pendence on an external timed event might not become clear
until the final action in a plan is added. If a process termi-
nates with a solution before its deadline, we say that it is
timely. Given Di(t), we assume w.l.o.g. that Pi is 1, other-
wise one can adjust Di(t) to make the probability of a dead-

line that is in the past (thus forcing the plan to fail) equal to
1− Pi.

The processes have known search time distributions, i.e.
performance profiles (Zilberstein and Russell 1996) de-
scribed by CDFs Mi(t), the probability that process i needs
total computation time t or less to terminate. Although some
of the algorithms we present can handle dependencies, we
make the typical metareasoning assumption in our analy-
sis that all the random variables are independent. Given the
Di(t) and Mi(t) distributions, the objective of (AE)2 is to
schedule processing time between the n processes such that
the probability of at least one process finding a timely solu-
tion is maximized.

A simplified discrete-time version of the problem, called
S(AE)2, can be cast as a Markov decision process. The
MDP’s actions are to assign (schedule) the next time unit
to process i, denoted by ci with i ∈ [1, n]. Action ci is al-
lowed only if process i has not already failed. A process is
considered to have failed if it has terminated and discovered
that its deadline has already passed, or if the current time is
later than the last possible deadline for the process.

The state variables are the wall clock time T and one state
variable Ti for each process, with domain N∪{F}, although
in practice the time domains of T, Ti are bounded by the lat-
est possible deadlines. Ti denotes the cumulative time as-
signed to each process i until the current state, or that the
process failed (indicated by F ). We also have special termi-
nal states SUCCESS and FAIL. Thus the state space is:

S = (dom(T )× ×
1≤i≤n

dom(Ti)) ∪ {SUCCESS, FAIL}

The initial state has T = 0, and Ti = 0 for all 1 ≤ i ≤ n.
The transition distribution is determined by which process
i has last been scheduled (the action ci), the Mi distribu-
tion (which determines whether currently scheduled pro-
cess i has completed its computation), and Di (which de-
termines the revealed deadline for a completed process, and
thus whether it has succeeded or failed). If all processes fail,
transition into FAIL (with probability 1). If some process is
successful, transition into SUCCESS. The reward is 0 for all
states except SUCCESS, for which the reward is 1.

The S(AE)2 problem is NP-hard, even for known dead-
lines (denoted KDS(AE)2) (Shperberg et al. 2019).

2.1 Greedy Schemes
As solving the metareasoning problem is NP-hard, Shper-
berg et al. (2019) used insights from a diminishing returns
result to develop greedy schemes. Their analysis is restricted
to linear contiguous allocation policies: schedules where the
action taken at time t does not depend on the results of the
previous actions, and where each process receives its allo-
cated time contiguously.

Following their notation, we denote the probability that
process i finds a timely plan when allocated ti consecutive
time units starting at time tdi

as:

si(ti, tdi
) =

ti∑

t′=0

(Mi(t
′)−Mi(t

′−1))(1−Di(t
′+tdi

)) (1)
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When considering linear contiguous policies, we need to
allocate ti, tdi pairs to all processes (with no allocation over-
lap). Note that overall a timely plan is found if at least one
process succeeds, that is, overall failure occurs only if all
processes fail. Therefore, in order to maximize the proba-
bility of overall success (over all possible linear contiguous
allocations), we need to allocate ti, tdi

pairs so as to maxi-
mize the probability:

Ps = 1−
∏

i

(1− si(ti, tdi
)) (2)

Using LPFi(·) (‘logarithm of probability of failure’) as
shorthand for log(1 − si(·)), we note that Ps is maxi-
mized if the sum of the LPFi(ti, tdi) is minimized and that
−LPFi(ti, tdi) behaves like a utility that we need to max-
imize. For known deadlines, we can assume that no policy
will allocate processing time after the respective deadline.
We will use LPFi(t) as shorthand for LPFi(t, 0).

To bypass the problem of non-diminishing returns, the no-
tion of most effective computation time for process i under
the assumption that it starts at time td and runs for t time
units was defined as:

ei(td) = argmin
t

LPFi(t, td)

t
(3)

The notion here is slightly generalized, as Shperberg et al.
(2019) actually had ei, which equals ei(0) here. We use ei
to denote ei(0) below.

Since not all processes can start at time 0, the intuition
from the diminishing returns optimization is to prefer pro-
cess i that has the best utility per time unit, i.e. such that
−LPFi(ei))/ei is greatest. But allocating time to process i
delays other processes, so it is also important to allocate the
time now to processes that have an early deadline. Shper-
berg et al. (2019) therefore suggested the following greedy
algorithm: Iteratively allocate tu units of computation time
to process i that maximizes:

Q(i) =
α

E[Di]
− LPFi(ei)

ei
(4)

where α and tu are positive empirically determined parame-
ters, andE[Di] is the expectation of the random variable that
has the CDF Di (a slight abuse of notation). The α param-
eter trades off between preferring earlier expected deadlines
(large α) and better performance slopes (small α).

The first part of Equation 4 is a somewhat ad-hoc mea-
sure of urgency, which additionally performs poorly if the
deadline distribution has a high variance. A somewhat more
advanced greedy scheme was defined by Shperberg et al.
(2021) in an attempt to define the notion of urgency more
precisely, and uses the notion of a damage caused to a pro-
cess if its computation is delayed by some time tu. This is
based on the available utility gain after the delay of tu.

An empirically determined constant multiplier γ was used
to balance between exploiting the current process reward
from allocating time to process i now and the loss in reward
due to delay. Thus, the delay-damage aware (DDA) greedy
scheme was to assign, at each processing allocation round,
tu time to the process i that maximizes:

Q′(i) =
γ · LPFi(ei(tu), tu)

ei(tu)
− LPFi(ei, 0)

ei
(5)

2.2 DP Solution for Known Deadlines
For KDS(AE)2 (known deadlines S(AE)2), it suffices to ex-
amine linear contiguous policies sorted by an increasing or-
der of deadlines (Shperberg et al. 2019), formally:
Theorem 1. Given a KDS(AE)2 problem, there exists a lin-
ear contiguous schedule with processes sorted by a non-
decreasing order of deadlines that is optimal.

Theorem 1 was used in (Shperberg et al. 2021) to obtain
a dynamic programming (DP) scheme.
Theorem 2. For known deadlines, DP according to

OPT (t, l) = max
0≤j≤dl−t

(OPT (t+j, l+1)−LPFl(j)) (6)

finds the optimal schedule in time polynomial in n, dn.
For explicit Mi representations, evaluating Equation 6 in

descending order of deadlines runs in polynomial time.

3 Interleaving Planning and Execution
In this paper, we extend the abstract S(AE)2 model to ac-
count for execution of actions during search. We assume
that each process has already constructed a sequence of ac-
tions, which will be the prefix of any complete plan below
the node the process represents. For each process, there is
a plan remainder that is still unknown. These assumptions
make sense if we equate each such process with a node in
the open list of a typical algorithm that searches from the
initial state to the goal, and adds an action when a node is ex-
panded. Here, the prefix is simply the list of operators lead-
ing to the current node. The rest of the action sequence is the
remaining solution that may be developed in the future from
each such node. However, here too we will abstract away
from the actual search and model future search results by
distributions.

Thus, in addition to distributions over completion times,
for each process i we have a plan prefix Hi (H for head),
containing a sequence of actions from a set of available
”base-level” actions B. Each action b ∈ B also has a dead-
line D(b). Upon termination, a process i delivers the rest of
the action sequence βi of the solution in one chunk. As βi
is unknown prior to termination, we assume a known distri-
bution Ri on dur(βi), the duration of βi, and that the actual
duration becomes known on termination.

Actions from any action sequence Hi may be executed
(in sequence) even before having a complete plan. Execu-
tion changes the state of the system and we adjust the set
of processes to reflect this: any process where the already
executed action sequence is not a prefix of its partial plan
becomes invalid. Executing any prefix of actions from any
Hi with the first action starting no earlier than time 0 (repre-
senting the current time), and such that the next action in the
sequence begins at or after the previous action terminates,
and is executed before its deadline, is called a legal execu-
tion. Any suffix βi is assumed to be composed of actions that
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cannot be executed before the process i terminates, thus the
execution of βi may only begin after process i terminates.
We also assume that base-level actions are non-preemptible
and cannot be run in parallel. However, computation may
proceed freely while executing a base-level action.

As in S(AE)2, we have a deadline for each process, but
with a different semantics; unlike S(AE)2, here the require-
ment is that the execution terminates before the (possibly
unknown) deadline; a sequence of actions fully executed be-
fore its deadline is henceforth called a timely execution. We
assume that there is a known distribution (of a random vari-
ableXi) over deadlinei the deadline for process i, and again
that its true value becomes known only once the search in
process i terminates. A typical application for such a set-
ting is having to solve a physical puzzle while in a room
with walls moving in upon the occupant, as in some famous
movie scenes. In this case, the deadline is the same for all
processes, and is known approximately in advance, that is,
all the Xi are equal.

It is easy to see that an execution of a solution delivered by
process i is timely just when the remainder βi begins execu-
tion in time to conclude before its deadline; that is, just when
start(βi) ≤ deadlinei − dur(βi). Since before computa-
tion completes these are random variables, then start(βi)
is also constrained by a random variable, which we call the
induced deadline for process i, and denote it by the random
variableDi. By construction, we haveDi = Xi−Ri, which
is well defined whether or not the Ri and Xi are dependent.

Thus, we will simply assume that the induced deadline
distribution Di is given, and can ignore Xi and Ri hence-
forth. Note that the semantics of the induced deadline is that
for a process i to be timely it must meet two conditions: 1)
complete its computation, as well as 2) complete execution
of all its action prefix Hi before the induced deadline Di.

The Interleaving Planning and Execution while Actions
Expire problem (IPAE), is thus defined as follows. We have
a set of base-level actions B, each action b ∈ B has dura-
tion dur(b) > 0. Given n processes, each with a (possibly
empty) sequence Hi of actions from B, a performance pro-
file Mi, and an induced deadline distribution Di, find a pol-
icy for allocating computation time to the n processes and
legally executing base-level actions from someHi, such that
the probability of executing a timely solution is maximal.
Example 1. Extending the instance from the introduction
where an agent needs to reach to the airport either by com-
muter train or by taxi. We have two processes: process 1
for the plan with the commuter train, and process 2 for the
taxi plan. Suppose the unit of time is one minute, and we
have to get to terminal D at the airport 30 minutes from
now. The train (which leaves six minutes from now) takes
22 minutes, but the planner has not yet checked what to do
at the end of the ride: the train may get to terminal D di-
rectly in which case no additional time is needed (say prob-
ability 0.8), or it may only stop at terminal A, requiring an
additional five minutes to travel to terminal D (thus missing
the deadline). Similar conditions may exist for the taxi plan,
with the ride taking 20 minutes to get to the airport termi-
nal D, but there also needs to be a payment step at the end,
the length of which the planner has not yet determined (say

one or ten minutes, each with probability 0.5). Representing
this as IPAE, we have H1 = [take elevator, ride train] and
H2 = [phone, take elevator, take taxi], with dur(phone) =
dur(take elevator) = 2, dur(ride train) = 22,
dur(take taxi) = 20, The remainder durations are dis-
tributed: for β1 we have R1 ∼ [0.8 : 0 ; 0.2 : 5], and
for β2 we have R2 ∼ [0.5 : 1 ; 0.5 : 10]. The dead-
lines are certain in this case, X1 = X2 = 30 with prob-
ability 1, and the induced deadlines are thus distributed:
D1 ∼ [0.8 : 30 ; 0.2 : 25] and D2 ∼ [0.5 : 29 ; 0.5 : 20].
Suppose remaining planner runtime for the train plan will
take seven minutes with certainty, and for the taxi plan it is
distributed: [0.5 : 1; 0.5 : 8]. The optimal policy here is to
run process 2 for one minute. If it terminates and reveals
thatD2 = 29, then call for a taxi and proceed (successfully)
with the taxi plan. Otherwise (process 2 does not terminate,
or terminates and reveals that D2 = 20), start executing the
actions from H1: take the elevator and run process 1, then
take the train and continue running process 1, hoping to find
that D1 = 30. This policy works with probability of success
PS = 0.25 + 0.75 ∗ 0.8 = 0.85.

We make the following simplifying assumptions:

1. Time is discrete, and the basic unit of time is 1 (as as-
sumed in S(AE)2).

2. The action durations dur(b) are known for all b ∈ B.

3. The variables with distributions Di, Mi are all mutually
independent.

4. The individual action deadlines D(b) are irrelevant (not
used, or equivalently set to be infinite), as the overall pro-
cess induced deadline distributions Di are given.

Although assumption 4 is easy to relax, doing so compli-
cates the analysis and is thus made to improve clarity. Our
algorithm implementations actually do allow for individual
action deadlines. Observe that any instance of S(AE)2 can
be made into an IPAE instance, by just setting all Hi to
be null. Therefore, finding the optimal solution to IPAE is
also NP-hard, even under assumptions 1-4. Thus, the initial
analysis in the paper will also make the assumption that the
induced deadlines are known, so as to try to get a pseudo-
polynomial time algorithm for computing the optimal pol-
icy. Note that having a known deadline (e.g. we know that
the room’s walls will crush the agent in two minutes exactly)
does not entail that the induced deadline is known, as typi-
cally dur(βi) will be unknown before the solution is known,
and therefore the induced deadline will be unknown before
termination. That is, it is possible that process i will find a
solution, and only then discover that it cannot be completed
on time, even for known deadlines.

4 Stating IPAE as an MDP
Under the additional assumptions 1 through 4 in Section 3,
we state the IPAE optimization problem as the solution to
the following MDP, similar to the one defined for S(AE)2.
The actions in the MDP are of two types: the base-level ac-
tions from B, and actions ci: that allocate the next time unit
of computation to process i. We assume that ci can only be
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done if process i has not already terminated and has not be-
come invalid by execution of base-level actions. An action b
from B can only be done when no base-level action is cur-
rently executing and b is the next action in some Hi after
the common prefix of base-level actions that all remaining
processes share.

The states of the MDP are defined as the cross product of
the following state variables:

1. Wall clock (real) time T ,

2. Time Ti already assigned to each process i, for all i from
1 to n. These variables will also be used to encode process
failure to find a timely solution, thus dom(Ti) ∈ N∪{F}.
The value F is also used to indicate any process i withHi

inconsistent with the already executed base-level actions.

3. Time left W until the current base-level action completes
execution.

4. The number L of base-level actions already initiated or
completed.

We also have special terminal states SUCCESS (denot-
ing having found and can execute a timely plan) and FAIL
(no longer possible to execute a timely plan). Thus, the state
space of the MDP is:

S = (dom(T )× dom(W )× dom(L)×
×1≤i≤ndom(Ti)) ∪ {SUCCESS, FAIL}

The identity of the base-level actions already executed is
not explicit in the state, but can be recovered as the first L
actions in any prefix Hi, for a process i not already failed.

The initial state S0 has elapsed wall clock time T = 0,
no computation time used for any process, so Ti = 0 for all
1 ≤ i ≤ n, and no base-level actions executed or started so
W = 0 and L = 0. The reward function is 0 for all states,
except SUCCESS, which has a reward of 1.

The transition distribution is determined by which pro-
cess i is being scheduled (a ci action) or how execution has
proceeded (a b action). For simplicity we assume that only
one action is applied at each transition, although base level
and computation action can overlap in real (wall clock) time.

Let S = (T,W,L, T1...Tn) be a state, and S′ be a state
after an action is executed. We use the notation var[state] to
denote the value of state variable var in state, for example
T [S] denotes the value of T in S, that is, the value of the
wall-clock time in state S.

For a base-level action, b ∈ B, which is only allowed
if W [S] = 0, the transition is deterministic: the count of
executed actions increases, and all processes incompatible
with b fail. That is, W [S′] = dur(b), L[S′] = L[S] + 1,
T [S′] = T [S], and:

Ti[S
′] =

{
Ti[S] if Hi[L[S] + 1] = b
F otherwise

A computation action usually advances the wall-clock
time, i.e. T [S′] = T [S]+1 andW [S′] = max(0,W [S]−1).
As a result, some processes may no longer be able to deliver
a timely solution at all, we call such processes, as well as
the computation actions of such processes tardy, as defined

below. Consider any process i that might be given a com-
putation time unit in state S and (possibly) terminating and
delivering a solution. The time at which this execution of the
solution can complete is given by the following equation,
where [i..j] denotes a sub-sequence from i to j, inclusive,
and dur(.) of a sequence of actions is the sum of durations
of the actions in the sequence:

ti[S] = T [S] +W [S] + dur(Hi[(L[S] + 1)..|Hi|]) + 1

That is, ti[S] equals time now, plus time remaining until the
current base-level action (if any) terminates, plus the dura-
tion of the tail of theHi prefix, plus the 1 time unit allocated
now. The probability that this is a timely execution is thus
1 − D(ti[S]). A process for which D(ti[S]) = 1 has zero
probability of delivering a timely execution and is called a
tardy process. Thus, when doing a computation action, each
process i that is tardy at S fails, that is, Ti[S′] = F with
probability 1; unless all processes are tardy in which case
we fail globally, i.e. S′ = FAIL. In the above cases, the
transitions are deterministic.

We allow a computation action ci only for processes i that
have not failed and are not tardy at S. For such a valid action
ci, we have T [S′] = T [S]+1 andW [S′] = max{0,W [S]−
1}, and Tj [S′] = Tj [S] for all j 6= i that are non-tardy. With
probability PC,i = mi(Ti[S]+1)

1−Mi(Ti[S]) process i now terminates,
given that it has not terminated before. Thus with probabil-
ity 1 − PC,i the process does not terminate, in which case
we get Ti[S′] = Ti[S] + 1. If the process does terminate,
as stated above, it delivers a timely solution with probabil-
ity 1 − D(ti[S]) in which case we set S =SUCCESS. The
solution fails to meet the induced deadline with probability
Di(t), in which case we have Ti[S′] = F , unless in the re-
sulting S′ there is no longer any non-tardy process that has
not failed, in which case set S′ =FAIL.

5 Known Induced Deadline IPAE: Properties
We need only policies that start from the initial state S0, so
we can represent a policy as an and-tree rooted at S0, with
the agent’s action as an edge at each state node, leading to a
chance node with next possible states as children.

A policy tree in which every chance node has at most one
non-terminal child is called linear, because it is equivalent
to a simple sequence of meta-level and base-level actions.
This can be extended to the case where there may be more
than one non-terminal child, as long as there is only one such
child with non-zero probability, thus we call these types of
policies linear as well. With this definition of linear policies,
we have:

Lemma 3. In IPAE with known induced deadlines, there
exists an optimal policy that is linear.

Proof. Observe that transitions for base-level actions are de-
terministic, and thus it is sufficient to consider deliberation
actions ci at any state S. Examining the transition distri-
bution in this case, the chance node has at most only two
non-terminal children: one where process i terminates and
fails, and one where it does not terminate. However, since
the induced deadlines are all known then in fact Di(ti[S])
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is either 0 or 1. However, the case Di(ti[S]) = 1 means
process i is tardy, so ci is not allowed. In the remaining
case, Di(ti[S]) = 0 and the chance node has only one non-
terminal child with non-zero probability.

For known induced deadlines it is thus sufficient to find
the optimal linear policy, represented henceforth as a se-
quence σ of the actions (both computational and base-level)
to be done starting from the initial state and ending in a ter-
minal state, unless we land in a terminal state due to pre-
vious actions in the sequence. Denote by CA(σ) the sub-
sequence of σ that contains just the computation actions of
σ. Likewise, denote by BA(σ) the sub-sequence of σ that
contains just the base-level actions of σ. Denote by σi↔j the
sequence resulting from exchanging the ith and jth actions
in σ. We call a linear policy contiguous if the computation
actions for every process are all in contiguous blocks, for-
mally:

Definition 1. Linear policy σ is contiguous iffCA(σ)[k1] =
CA(σ)[k2] = ci implies CA(σ)[m] = ci for all k1 < m <
k2 and all computation actions ci.

Theorem 4. In IPAE with known induced deadlines, there
exists an optimal policy that is linear and contiguous.

Proof. From the proof of Lemma 3, for known induced
deadlines an optimal linear policy is non-tardy, and any pro-
cess that terminates results in SUCCESS. Due to indepen-
dence between the Mi, the probability of termination (and
thus success) of each process depends only on the total pro-
cessing time ai allocated to it, and equals Mi(ai). There-
fore, the total probability of success is invariant to the order
of computation actions, as long as all computation actions
do not cause i to become tardy. It is thus sufficient to show
that every linear non-tardy policy can be re-arranged into
one that is contiguous.

Let σ be an optimal linear policy, and k be the latest in-
dex where contiguity is violated in CA(σ). That is, the sub-
sequence CA(σ)[(k + 1)..|CA(σ)|] is contiguous, but we
have CA(σ)[k] = cj , CA(σ)[k + 1] = ci 6= cj , and there
exists m < k such that CA(σ[m]) = ci. Then, CA(σ)m↔k

still results in a non-tardy policy when replacing CA(σ) by
CA(σ)m↔k in σ. That is because the moved cj is made
earlier, so cannot become tardy due to this change, and the
moved ci also does not become tardy as there is a later ci that
is non-tardy. Also, CA(σ)m↔k[k...|CA(σ)|] is contiguous
by construction. This exchange step can be repeated until
the policy becomes contiguous.

Theorem 4 is an extension of a similar theorem that holds for
S(AE)2, to linear policies that contain base-level actions.

However, we still need to deal with scheduling the base-
level actions. We show below that schedules we call lazy,
are non-dominated. Intuitively, a lazy policy is one where
execution of base-level actions is delayed as long as possible
without making the policy tardy or illegal (base-level actions
overlapping).

Definition 2. A linear policy σ is lazy if σi↔i+1 is tardy or
illegal for all i where σ[i] ∈ B.

Note that if σ[i] is a base-level action, an optimal policy
will always schedule computation at σ[i + 1], since the du-
ration of any base-level action is strictly positive and com-
putation is better than idling.

Theorem 5. In the IPAE with known induced deadlines,
there exists an optimal policy consisting of a lazy contigu-
ous linear policy.

Proof. Define a lexicographic ordering >L on linear poli-
cies w.r.t. the index at which their base-level actions occur.
x >L y if, for some k ≥ 0 the first k base level actions in x
and y start at equal indices respectively, and the k+1 action
of x starts later than that of y. Let σ be the optimal contigu-
ous linear policy that is greatest w.r.t.>L. Assume in contra-
diction that σ is not lazy. Then by definition there exists an
index i such that σ[i] ∈ B and σi↔i+1 is legal and non-tardy
and contiguous (no change in order of computation actions).
Note that σi↔i+1 has the same computation time assigned
to each and every process, as σ, so, being non-tardy, has the
same probability of success as σ. Since σi↔i+1 >L σ and is
also optimal, we have a contradiction.

6 Pseudo-Polynomial Time Algorithms
Since with known deadlines there exist pseudo-polynomial
time algorithms for S(AE)2, it is of interest whether this is
the case for IPAE as well. The key notion allowing this to
work for S(AE)2 is that there exists an linear contiguous
policy that assigns the processing in order of deadlines.

Unfortunately, this is not the case for IPAE because the
timing of the base-level actions affects the order in which
computation actions become tardy. Nevertheless, under ad-
ditional restrictions it is still possible to get a pseudo-
polynomial time algorithm. The idea is to find cases where
the assignment ordering still holds, and then one can still use
the dynamic programming scheme from S(AE)2.

6.1 Bounded Length Prefixes
We observe that if we can pre-determine the time when base-
level actions are executed, then it is possible to get an equiva-
lent S(AE)2 problem which can be solved by DP in pseudo-
polynomial time. The number of such possible base-level
action schedules is exponential in the maximum number of
base-level actions in any of the Hi prefixes. Thus, under the
assumption that this length is bounded by a constant K, we
get a pseudo-polynomial time algorithm. Equivalently, we
can artificially disallow executing more than a constant K
actions before computation is complete, thus achieving the
same effect.

First, observe that the sequences of actions we need to
consider are only one of the Hi, as any action not in such
a sequence would invalidate all the processes and thus is
dominated. Consider the set of all linear contiguous policies
that have a specific execution start time for all the actions
in Hi, which we denote by the function Ii which maps ac-
tions in Hi to their start time. Note that this schedule for i
may leave room for additional computations from other pro-
cesses j, up until such time as j is invalidated by i. Under
a specific Ii function, we can define an effective deadline
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deff
j for each process j, beyond which there is no point in

allowing process j to run. Note that the effective deadline
is distinct from the known induced process deadline, which
we will denote as di. The effective deadline is defined as
follows. Let k ∈ Hi be the first index at which prefix Hj

becomes incompatible with Hi. Then process j becomes in-
valid at time Ii(k). Also, consider any indexm < k at which
the prefixes are still compatible. The last time at which ac-
tion Hi[m] may be executed to achieve the known induced
deadline dj is ti,m = dj − dur(Hj [m..|Hj |]). That is, pro-
cess j becomes tardy at ti,m unless base-level action Hi[m]
is executed before then. The effective deadline deff

j for pro-
cess j is thus:

deff
j = min(Ii(k), {ti,m : ti,m < Ii(Hi[m])}) (7)

Theorem 6. Among the set of linear contiguous policies for
a specific Hi and initiation function Ii, there exists an opti-
mal policy where the processes are allocated in an order of
non-decreasing effective deadlines.

Proof. (outline): For the base-level action commitments Ii,
by construction, process j results in a timely execution iff it
terminates in time before deff

j . Thus, linear contiguous poli-
cies that have computational actions cj only before deff

j are
optimal w.r.t. the commitment Ii. The probability of success
of such policies is given by Equation 2. The resulting limited
problem setting is such that now the conditions of Theorem
1 apply.

Due to Theorem 6, using the effective deadlines as the
process deadlines takes into account the base-level actions,
so we can now use the DP for S(AE)2 to get an optimal
computation-time policy and compute its success probabil-
ity. Now we need to simply iterate over all possible Hi and
all possible action initiation times in each Hi, and deliver
the policy with the highest probability of success.

6.2 The equal slack case
We call the difference di − dur(Hi) the slack of process i,
because it is the maximum time we can delay the actions
in Hi in order to have a timely execution when process i
terminates. The special case of known induced deadlines
where the slack of all processes is equal affords a pseudo-
polynomial time algorithm using this scheme.

In the equal slack case, for each of the Hi sequences, it
is sufficient to consider the actions in Hi to be executed
contiguously, with the first action at time equal to the slack
di − dur(Hi). Now the effective deadline deff

i for each pro-
cess j equals the time at which the first action b ∈ Hi which
is incompatible with Hj occurs, or di otherwise. Thus in
this case we have only one initiation function Ii we need to
consider for each Hi, so only need to run the DP scheme n
times, regardless of the length of the Hi.

7 Algorithms for the General Case
The pseudo-polynomial time algorithm in Section 6 only ap-
plies when the deadlines are known and when the number of
the base-level actions in eachHi is small. Therefore, we now
propose several sub-optimal algorithms for the general case.

Max-LETA. The Max-LETA schema is defined using
as a parameter an algorithm A for the S(AE)2 problem.
First, we treat the problem as a known-deadline problem
by considering the minimal value in the support of Di for
each i. (Other methods of fixing the deadline can be used,
such as taking the expectation.) Then, for every process i,
Max-LETA fixes the base-level actions to be at the Latest
Execution-Time at which every action in the head needs to
be executed (with respect to the known deadline). By fix-
ing the base-level actions to those induced by process i, the
IPAE problem instance can be reduced to an S(AE)2 in-
stance. Then algorithm A can be executed on the S(AE)2
instance and return a linear policy Pi and a success prob-
ability of that policy. Max-LETA chooses the linear policy
with the highest success probability among all Pis.

K-BoundedA. K-BoundedA is similar to Max-LETA

with one difference. Instead of fixing the base-level actions
only to the latest start-time of every process i, K-BoundedA
considers all possible placements for the first K actions,
while the rest of the time-allocations are determined using
the latest start-times.

Monte-Carlo tree search (MCTS). Since the IPAE prob-
lem can be defined as a finite-horizon MDP, standard heuris-
tic search algorithms that operate on such MDPs can be ap-
plied. One such algorithm is the prominent MCTS (Browne
et al. 2012). The MCTS version of MCTS that we have
implemented uses UCT, which applies the UCB1 formula
(Auer, Cesa-Bianchi, and Fischer 2002) as a scheme for se-
lecting nodes and a random rollout policy that uses −LPF
as a value function for sampled time allocations.

8 Preliminary Empirical Evaluation
Our experimental setting is inspired by movies such as Indi-
ana Jones or Die Hard in which the hero is required to solve a
puzzle before a deadline or suffer extreme consequences. As
the water jugs problem from Die Hard is too easy, we have
selected the well-known 15-puzzle problem instead. In order
to build IPAE problem instances, we first collected data by
solving 10, 000 problem instances and recording the number
of expansions required by A* to find a solution for each ini-
tial state in order to find an optimal solution, and the actual
solution length. Then, we have created two CDF histograms
for each initial h-value: the required number of expansions
and the optimal solution lengths. IPAE problem instances
of N processes were generated by drawing a random 15-
puzzle problem and running A* until the open-list contains
at least N search nodes, with N ∈ {2, 5, 10, 20, 50}, and
then choosing the first N . Each open-list node i becomes an
IPAE process, with Mi being the node-expansion CDF his-
togram corresponding to h(i), Ri as the solution-cost CDF
histogram (to represent the remaining duration of the plan),
and Hi as the list of actions that leads to i from the start
node. We assumed that each base-level action requires 3
time units to be completed. Finally, in order to have chal-
lenging deadlines, we have usedXi = 4×h(i) (representing
the deadline for reaching the goal). Note that even thoughXi

is known, Di is unknown as Ri is unknown.
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Figure 1: Success Probability (left) and Runtime (right) as a function of # processes

The following algorithms were empirically evaluated in
our experiments. From S(AE)2, we implemented: the ba-
sic greedy scheme (BGS) (Shperberg et al. 2019), delay-
damage aware (DDA) (Shperberg et al. 2021), and dynamic
programming (DP). In order to naively adapt S(AE)2 al-
gorithms and other basic schemes to the IPAE problem
settings, we define a demand-execution version thereof. A
demand-execution algorithm first decides which process i
should be allocated the next time unit; then checks if a
base-level action b is required for ci to be non-tardy. If
so, the action b is executed before ci. We have evalu-
ated a demand-execution version of the S(AE)2 algorithm
(eBGS and eDDA), demand-execution most-promising pro-
cess (eMPP) that allocates consecutive time to the process
with the highest probability to meet the deadline; if the pro-
cess fails to find a solution, eMPP recomputes the proba-
bilities with respect to the remaining time. Finally, we have
implemented the algorithms described in Section 7. Specif-
ically, we have evaluated Max-LETBGS, 2-boundedBGS, and
MCTS with an exploration constant c =

√
2 and a budget of

100 rollouts before selecting each time allocation.
Figure 1 shows the average probability of success (left)

of each algorithm (y-axis), as well as the average runtime
(right), both vs. number of processes in the configuration (x-
axis). First, the results indicate that the demand-execution
version of the S(AE)2 significantly improves over the basic
version, e.g. for 50 processes DDA has a probability suc-
cess of 0.18, while eDDA has a probability of 0.78 to find
a timely action sequence. MCTS demonstrates poor perfor-
mance both in terms of probability of success and in terms
of runtime; this indicates that finding specialized heuristics
tailored to the problem has a merit over using general pur-
pose algorithms for (approximately) solving MDPs, as the
search space is extremely large. The most competitive algo-
rithms in terms of both probability of success and runtime
are eBGS, eMPP and MAX-LETBGS which result in the best
probability of success for 10, 20 and 50 processes, respec-
tively, and were very competitive overall. In the future, we

intend to explore the effect of different deadlines and differ-
ent time units required for each base-level action in order to
have a better understanding of the strengths and weaknesses
of each algorithm.

9 Conclusion
Planning and search are generally intractable, so it is un-
realistic to assume that time stops during planning. Hence
the need for situated planning and search, especially when
timely results are needed. In many cases, it may be possible
to start executing a partially developed plan while continu-
ing to search, thus allowing additional time to deliberate at
some risk of performing actions that do not lead to a solu-
tion.

This paper extends the abstract metareasoning model for
situated temporal planning proposed in (Shperberg et al.
2019) to allow for interleaving action and deliberation. As
our abstract problem IPAE is NP-hard, even for known dead-
lines and known remaining sequence duration, we identified
special cases where a psuedo-polynomial time algorithm can
be developed, namely bounded-length plan prefixes and the
equal-slack case.

Additional algorithms were developed for the general
case of unknown deadlines and suffix durations. Experi-
ments based on search trees for sliding tile puzzles show
that algorithms based on ideas from the known-deadline case
show promise. There is still work to be done in improving
both these algorithms’ results and their runtime, which is un-
derway. A key issue is actually using the proposed scheme
to initiate action during planning and search, which is non-
trivial and has not been attempted here.
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Abstract

The game of monopoly is an adversarial multi-agent domain
where there is no fixed goal other than to be the last player
solvent There are useful subgoals like monopolizing sets of
properties, and developing them. There is also a lot of un-
certainty from dice rolls, card-draws, and adversaries’ strate-
gies. This unpredictability is made worse when unknown
novelties are added during gameplay. Given these challenges,
Monopoly was one of the test beds chosen for the DARPA-
SAILON program which aims to create agents that can detect
and accommodate novelties. To handle the game complexi-
ties, we developed an agent that eschews complete plans, and
adapts it’s policy online as the game evolves. In the most
recent independent evaluation in the SAILON program, our
agent was the best performing agent on most measures. We
herein present our approach and results.

Introduction
AI agents are often trained and evaluated in closed settings
where the dynamics are fixed. They have shown spectac-
ular performance in such settings; this is notably seen in
game-playing agents such as in Chess and Go (Silver et al.
2017). However, we seldom consider how well these agents
would act when novelties or changes are injected into the
environment, i.e. an open-world setting. This would require
execution monitoring to know what parts of the model have
changed, and adapting to it as necessary. Developing agents
to handle an open-world setting is necessary if we want to
bring robust AI-agents into the real world.

With this in mind, DARPA (Defense Advanced Research
Projects Agency) started a research program on Science of
Artificial Intelligence and Learning for Open-world Novelty
(SAIL-ON). The agents developed as part of this program
are developed with the objective of handling novelties in the
environment. One of the test-beds chosen for the SAIL-ON
program is the game of Monopoly.

Monopoly is a board game about real-estate develop-
ment with upto 4 adversaries. The objective of the game is
to be the last solvent player. This is done through buying
and developing properties, so as to charge the other play-
ers rent and fees. The game dynamics are first affected by

*indicates equal contribution

dice rolls which determines how each player moves around
the board. The game dynamics are also affected by draw-
ing of “chance” and “community cards” ( elements of luck),
as well as by the combinations of the actions (strategies)
of adversaries. If one adds in novelties, such as changes to
the board layout, rent or bank rates, then the game becomes
more unpredictable and hard to pre-train for.

Due to the aforementioned challenges, a plan of action
can fall apart in a single round. In such an uncertain en-
vironment, we take the cautious and simple approach of
state-evaluation after a single-step, where the strength of the
approach comes from cautiously approximating the future
value of the state after an action. This relatively simple ap-
proach outperformed other approaches as evaluated by an
independent performer in the DARPA SAIL-ON program on
the Monopoly test-bed.

In this paper, we first present and frame Monopoly as a
challenging test-bed for interleaving online planning and ex-
ecution, especially when novelties are injected (open-world
setting). Then we discuss our agent for Monopoly, and also
present the results of the evaluation made by an independent
third-party evaluator; the evaluation compared our method
against other teams in the DARPA SAIL-ON program. We
propose our agent methodology as a strong baseline for
future research on open-world robustness, and agents in
Monopoly.

Monopoly Game And Simulator
Monopoly is a multi-player adversarial board game with
upto 4 players (traditionally), where the objective is to be the
last player solvent after having bankrupted the others. This
is done through buying and developing properties so as to
charge higher rent when the other players land on your prop-
erties. Players move across the board based on dice rolls,
and can buy properties owned by the bank. If one lands on a
property owned by another player, rent is charged. Rent on
a property can be increased by owning all properties of a set
(categorized by color); this is called having a monopoly over
that set. The rent can be further increased by building houses
and hotels on a monopolized set. Any policy or plan of ac-
tion needs to be adapt to the changes of fortune with dice
rolls, and the decisions of other players, which makes it chal-
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lenging as a domain for integrated planning and execution.
The full set of rules for the game simulator (test bed) and all
the nuances can be found in (Haliem et al. 2021) which also
contains a link to the game simulator code. This simulator
was developed by an independent evaluator for the SAILON
program. In the game simulator, one can also inject novelties
on top of the standard game to study how the agent adapts to
these modifications. Novelties were part of the evaluations
of the agents developed for the SAIL-ON program, and will
be discussed more in subsequent sections

Game Novelty
For the SAIL-ON program evaluation, agents were tested
with one novelty injected per trial, where each trial is 100
games of Monopoly. The novelty could be added in any one
of the 100 games and persists for the remaining games. The
novelty could be changing the number of properties in a set
required for Monopoly, the rent of a property after building
a hotel on it, the order of properties on the board and such.
The set of possible novelties is not shared with us by the
evaluation/test team, and so it is left to us to make the agent
as robust and adaptable to novelties as possible.

Agent Design
We developed our agent such that it’s policy is controlled by
a state-value function. The value of a state is primarily deter-
mined by the expected short and long term reward obtained
from that state. Before we discuss the details of how these
rewards are calculated, we first present the motivation for
our design. Typically, approaches that use a value function
for game-playing agents – like MCTS (Browne et al. 2012)–
either simulate trajectories to the end and backpropagate the
terminal state value to compute the starting state’s value, or
they use a limited lookahead with an evaluation function that
captures the value of the rest of the trajectory. We use the
simplest form of the limited-lookahead approach where we
just lookahead by 1-step and then evaluate the next state by
approximating the expected short and long term returns that
would result by taking the action.

Our reason for planning with a 1-step lookahead was that
in the game of Monopoly, a single roll of the die, or a chance
card, or an adversary’s decision could change the entire
value of a state. So to compute the value of a state accurately
with simulated actions, requires considering a very large set
of branches from an extremely wide and deep tree that in-
cludes many possible combinations of dice rolls, combina-
tion of player decisions, auction bids, and more. It should be
noted that each turn of a player also includes what are called
out-of-turn moves by other players, which further increases
the branching factor of the search tree; please refer to the
monopoly rules in (Haliem et al. 2021) for more detailed
information.

If one had a very accurate mental model of adversaries,
the possible branches of the search tree might become more
manageable. Additionally, pre-training a large neural net-
work for state evaluation–as was done with alpha-go (Sil-
ver et al. 2017)– is not viable since our agent would have to
handle novelties or modifications to the game (the space of

which we did not know). Lastly, the evaluators impose a max
time limit of 3 hours per full-game, so simulating enough
MCTS rollouts for each action did not seem feasible.

Thus, in this work, our focus on intelligently evaluating a
state after a single action by considering short and long term
consequences; rather than requiring an accurate and com-
plete model to rollout and evaluate each state, we consider
long term consequences with simplifying assumptions (will
be discussed). The state value includes the current monetary
value of possessions, potential short and long term gains, as
well as the future benefit of monopolized properties. Impor-
tantly, the evaluation function is largely parameterized with
game attributes (that can change) and has few tuned con-
stants; this helps make it robust to game variations. We will
first go over the evaluation function. We will then provide
some examples of the state attributes that are tracked and
updated in V(s) to accommodate for novelty.

State Evaluation Function
The value of a state should consider the current (monetary)
value of owned properties as well as the potential for fu-
ture earning as possible future rewards. Thus, the evaluation
function we propose is a linear combination of four terms
i.e. V(s) =Massets +Rs +Rl +Mmonopoly. Each of these
terms is described below:
Massets: Property value of all the agent’s assets that are

not currently mortgaged. Each property can be mortgaged
with the bank for cash. We can buy back the property from
the bank for the mortgaged amount plus interest on the mort-
gage.
Rs: short term expected gain in funds computed as the

difference between expected rent the agent will get for the
properties that it owns in state s and the expected rent it
would owe to other players based on current ownership of
properties over the next k turns. The expectations are com-
puted over the probabilities of each player landing in a par-
ticular position in the next k turns. This is akin to a rollout
with the strong relaxation (assumption) that no more prop-
erties will be bought or developed. To be specific, let G be
the set of all agents, g1 be our agent, P(g) denote the prop-
erties owned by agent g, r(p) denote the rent of property p,
and Pr(g, p, k) denote the probability that an agent g will
land on a property p in the kth turn from state s, then Rs is
computed as:

Rs =
∑

k

∑

g∈G−g1

[ ∑

p∈P(g1)

Pr(g, p, k) ∗ r(p)−

∑

p∈P(g)

Pr(g1, p, k) ∗ r(p)
] (1)

Rl: the expected long term change in funds. The computa-
tion for this term is similar toRs, except that the probability
of an agent landing on a property is assumed to be uniform
over all properties. Note that the long term gain is calcu-
lated for k full loops/passes around the board (not turns).
The value of k for bothRs andRl was taken as 5.
Mmonopoly: A monopoly gain term is computed to incor-

porate the monetary benefit our agent would get for mo-
nopolizing and improving all properties of the same color.
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The purpose of this term is to drive our agent towards tak-
ing actions that would let it gain a monopoly on a color and
subsequently perform maximal improvements on its proper-
ties. To computeMmonopoly, we start by calculating the ex-
pected funds, F , our agent would have after going around
the board (full loop) k times ( k = 5 in our implementa-
tion) from its current position as F = cash possessed + k ∗
go increment +Rl where the last term Rl is also computed
for k loops around the board. Now let C(g1) be the set of
all colors such that our agent owns at least one property of
that color. Then for each c ∈ C(g1), we compute the com-
bined potential rent for that color (Rc) that our agent will
get from all the properties of that color if it spends all of
F in buying all the properties of color c followed by im-
proving each of the properties as much as possible with the
remaining amount from F . This potential rent value is then
scaled down based on how many properties the agent ac-
tually possess (currently) for that color. For example, if we
own 1 out of 3 blue properties, then the potential value from
that color should be much less than if we own 2 out of 3
red properties. The scaled potential value Rs

c is computed
as Rs

c = Rc/2
P(c)−P(g1) where P(c) is the total number of

properties of color c. We use an exponential function in the
denominator to value color sets that are closer to comple-
tion significantly more than others. Since the set size can
change as part of game novelties, we think this is prudent.
Finally, the monopoly component of the state evaluation,
Mmonopoly, is simply computed as the maximumRs

c over all
the c ∈ C(g1). What this monopoly term does for the agent
is to allow it to eschew buying new or bidding for proper-
ties if that amount can be used to complete and develop a
monopoly.

Avoiding Bankruptcy
Another complication for the agent, is that it must try to
avoid bankruptcy in the face of a lot of stochasticity from
the game. So even if the expected value of a policy is high,
if it risks bankruptcy then a lesser-value policy that mini-
mizes the risk of bankruptcy might be preferred. Concretely,
at any state s, the agent considers if each possible move from
the set of possible moves m ∈ M with cost C(m) satisfies
the following conditions:

Condition 1: cashcurrent +Rnext−C(m) ≥ cashmin where
cashcurrent is the current amount of money our agent pos-
sess, Rnext is the expected change in cash due to rent after
one round, cashmin denotes the absolute minimum amount
needed to protect against bankruptcy. This covers misfor-
tunes from the Chance and Community chest cards that the
agent might draw.

Condition 2: cashcurrent +Rowed +worthscaled − C(m)−
Rworst > 0 whereRowed is the expected income from charg-
ing rent that our agent will get in the next round, worthscaled
is some mortgage value of all properties our agent owns,
and Rworst is the maximum possible rent our agent could be
charged in the next round. This protects against bankruptcy
from landing on an adversary’s property. Both the above
conditions were used to prevent the agent from aggressively
spending its cash and going bankrupt. Once we have pruned
the moves in M, our agent simply chooses the move such

that m = argmaxm V (s′m) where s′m is the next state after
simulating the move m.

Novelty Detection and adaptation
To perform well in the SAIL-ON evaluation, our agent needs
to detect the novelties introduced and adapt state evaluation
accordingly. The novelties that the agent was tested on were
hidden. To adapt, we maintain knowledge of the expected
values for game-board attributes like property rent, dice out-
come likelihood, etc. The evaluation function is parameter-
ized with such attributes and is updated once a change is
detected. Some of these values are provided directly as the
state information and thus we keep track of the current val-
ues of these attributes by observing the state. For other at-
tributes, the agent needs to observe the outcome of certain
actions (like selling a property) to infer how the relevant at-
tributes changed. In attribute value changes, we also detect
novelties related to dice. This includes addition/deletion of
a die, additional sides added to the dice, and the distribution
of rolling any number on each die. The first two are inferred
by observing the dice rolls in the game. For the last one,
we model the distribution of rolling any number as Dirichlet
distribution and use MAP estimates to update this distribu-
tion. This updated dice distribution is then used to compute
the probability function Pr , as used in equation 1.

Evaluation and Results

Novelty type NDA(%)
Best
competitor
NDA(%)

Win-rate (%)

Best
competitor
win
rate (%)

None(PNWP) - - 76.48 63.61
CN-easy 40 20 71.1295 58.448
CN-medium 46.67 20 64.8895 61.867
CN-hard 48.00 24 28.899 43.173
AN-easy 90.32 80 70.473 62.335
AN-medium 90 90 94.432 68.5425
AN-hard 75 20 61.503 46.1825
RN-easy 52 3.33 74.9905 58.448
RN-medium 32 13.33 78.0975 50.8625
RN-hard 32 20 81.5815 67.6585

Table 1: Novelty detection and reaction performance in the
DARPA SAILON program

Our agent was evaluated against other teams in the SAIL-
ON program by an independent evaluator separately funded
by DARPA. Evaluation consists of multiple trails, where
each trial consists of 100 games of monopoly against 3
baseline agents. The baseline adversarial agents were pro-
grammed by the evaluation team to serve as the competition
baseline. The behavior of the baseline agent is described in
(Haliem et al. 2021) as the ”simple baseline agent” in that
work. During each trial, a novelty is injected during one of
the 100 games, and kept for the remaining games.

Measures of performance
The following metrics help compare agent performance: (1)
Pre-Novelty Win-Percentage (PNWP): The ratio of games
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won before any added novelty. (2) Novelty Detection Accu-
racy (NDA): This is the percentage of trials in which the
novelty was correctly detected, and without a false posi-
tive before the novelty was added. (3) Novelty Reaction
Performance (NRP): To compute this, the win ratio of our
agent after the novelty was added is divided by the win
ratio of the baseline agent before the novelty was added.
These measures were not defined by us, but by the evalua-
tion group, and directed by discussions in the SAIL-ON pro-
gram. For every measure, our agent was evaluated with dif-
ferent classes of novelties, these are: Class Novelties (CN)
such as new classes of objects like property classes, or new
classes of actions; Attribute Novelties (AN) such as changes
in the mortgage rate, rent costs; and Representation Nov-
elties (RN) such as changes to the position of properties,
and the color sets to which they belonged. Within each type
of novelty, the evaluators further classified them into easy,
medium and hard. As mentioned, we do not have more de-
tails about the specific type and distribution of novelties that
our agent was evaluated on, as this information is currently
hidden from us to evaluate agent adaptation better.

Results
We report our performance in Table 1 where we provide
our performance and the performance of the best competi-
tor for NDA and Win percentages for the different novelty
settings. With respect to the win ratio of our agent, our pre-
novelty win ratio (PNWR) was 76.48%, i.e the 3 other base-
line agents combined only won less than a quarter of the
games when there was no novelty injected. This win rate rep-
resents the efficacy of our agent design/playing algorithm for
the standard Monopoly game. In comparison the win rate for
the next best team was 63.61%. Our agent performs better
before novelty was added to the game, and also in most set-
tings after novelty was added to the game. The only setting
in which our agent did not get the best result was for ”NRP-
CN-hard” (Novelty Reaction performance for hard class-
novelties). This reflects our agent’s ability to accurately cap-
ture both the short and long terms effects of actions, as well
as, how well it can adjust for novelties in the game while
making decisions by modifying the evaluation function dur-
ing the gameplay. The evaluators also ran a special test to see
how well our agent performs against another instance of our
agent, and a baseline agent. The two instances of our agent
won 40.75 and 39.43% of the games on average (over many
trials).

Related Work
There are connections between replanning systems and han-
dling open-world novelty. Replanning systems are aimed at
dealing with unanticipated changes in the dynamics, but tra-
ditionally, replanning systems don’t automatically character-
ize the novelty or change their domain model (Yoon, Fern,
and Givan 2007). In (Cushing and Kambhampati 2005), the
authors discuss how to update the planning problem to han-
dle unexpected changes with a language for failure repre-
sentation, but not how to automatically characterize a nov-
elty and update the model. In our methodology we do online

model-update and replanning by incorporating the novelties
into our state-evaluation function.

With respect to agents for Monopoly, there have only been
a few notable attempts; (Haliem et al. 2021) recently pro-
posed a Reinforcement Learning (RL) approach where they
train a Deep Q-Network agent (Mnih et al. 2015) to play
Monopoly. To accelerate learning, they employ a ε-greedy
approach during training where instead of executing a ran-
dom action for exploration, the agent imitates the policy of
a rule-based agent which was manually designed to follow
known successful strategies to winning Monopoly. Other
RL-based approaches include (Bailis, Fachantidis, and Vla-
havas 2014) and (Arun et al. 2019) where the Q-function is
again approximated by a neural network. To train the agent,
the former approach uses theQ(λ)-learning technique (Peng
and Williams 1994), whereas the latter uses experience re-
play (Mnih et al. 2015). To restrict the action space of the
agent, all the mentioned techniques only select the action
type, and the parameters are chosen by fixed rules; for ex-
ample the sell property action in (Haliem et al. 2021) would
sell possesions in a fixed order, a hotel, a house or a property
depending on availability.) In our approach, we only con-
strain the trade-related actions to rule based behavior. Fur-
ther, we argue that our approach is more suited to devel-
oping an agent that is robust to open-world pertubations; the
aforementioned RL-based approaches would require retrain-
ing the agent once any novelty is encountered, even some
simple parameter changes such as rent values.

Another approach for playing Monopoly was presented
in (Sammul 2018) which uses MCTS (Browne et al. 2012)
for its decisions. To make this feasible, the author makes
significiant game simplifications to reduce the action space
and game-tree size. For example no out-of-turn actions are
allowed, which is a significant deviation from the game. This
pruning, coupled with the agent having access to the best
(by win rate) adversary model it will play against, is what
helped the MCTS method achieve a win rate of 63%. We,
on the other hand, handle the chaotic nature of the game
by evaluating the state features intelligently, and not rolling-
out and relying on the availability of an accurate adversary
model.

Conclusions and Future Work
We present the game of Monopoly as a challenging test bed
for evaluating open-world robustness, and integrating online
planning and execution. We propose our agent methodology
of using a flexible state evaluation function as a strong ap-
proach to handling novelties in the environment as demon-
strated through an independent evaluation in the game of
Monopoly. There are plenty of interesting avenues for fur-
ther research: these include including learning and updat-
ing adversary mental models, and analyzing the cost/benefit
tradeoff in varying the lookahead depth in the game tree es-
pecially if the game and adversary models change over time.
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Abstract

In online planning, planning happens concurrently with exe-
cution. Under the formulation of planning as heuristic search,
when the planner commits to an action, it re-roots its search
tree at the node representing the outcome of that action. For
the system to remain controlled, the planner must commit to
a new action (perhaps a no-op) before the previously chosen
action completes. This time pressure results in a real-time
search. In this time-bounded setting, it can be beneficial to
commit early, in order to perform more lookahead search fo-
cused below an upcoming state. In this paper, we propose a
principled method for making this commitment decision. Our
experimental evaluation shows that our scheme can outper-
form previously-proposed fixed strategies.

Introduction
Many applications of planning involve time pressure. Often,
we want to achieve the goal as soon as possible, minimizing
the so-called Goal Achievement Time (GAT) (Hernández
et al. 2012; Kiesel, Burns, and Ruml 2015). In situated tem-
poral planning, external time constraints, such as buses or
trains that depart at scheduled times, cause plans to become
infeasible if we take too long to plan (Cashmore et al. 2018;
Shperberg et al. 2021). One way to address time pressure
is to design faster planning algorithms. But many planning
problems are inherently intractable. The most direct way to
address planning under time pressure is to allow actions to
begin executing before a complete plan has been found. Fur-
ther planning can then overlap with action execution. The
fundamental question in such online planning settings is:
when should the planner commit to an action?

Existing methods offer simple fixed answers to this ques-
tion. Some methods use a fixed amount of lookahead for
every action selection decision and commit to exactly one
action given this lookahead. Others commit to multiple ac-
tions, even the entire sequence of actions leading all the way
to the search frontier. In this paper, we develop a principled
approach to action commitment that uses heuristic informa-
tion to assess the planner’s uncertainty about action values.
This uncertainty then drives the decision of whether to com-
mit to an action or whether to perform additional lookahead
before deciding. Although our investigation is at an early
stage, our preliminary results already indicate that the ap-
proach has promise, as it outperforms previous non-adaptive

strategies in three challenging scenarios.

Background
Problem Setting
Our problem setting requires the system to be controlled
at all times. That is, some action must be executing at any
given time, even if it is just a no-op that leaves the state un-
changed. (Some domains, such as fixed-wing aircraft con-
trol, do not have no-op actions.) We make the additional
simplifying assumptions that actions are serial and that the
world is fully observable and deterministic. Thus, we have
a planner searching for a sequence of actions under the con-
straint that at all times at least one action (beyond those that
have already completed) has been computed, committed to,
and has begun execution. The objective of the system is to
achieve a goal as soon as possible. Because we are address-
ing concurrent planning and execution, we used GAT as our
main evaluation metric. This is the total time taken from the
start of planning to the arrival of the agent at a goal.

We take a heuristic search perspective, in which planning
explores an incrementally-generated tree of feasible action
sequences, with the root of the tree representing the state
resulting from the execution of all actions that have been
committed to up to now. The planner is allowed to commit
to actions earlier than required, in order to allow it to re-
root the tree at a deeper node, thereby focusing the search
later on into the future. A commitment queue records all the
committed actions. How and when to make such additional
commitments, so as to reduce the expected time to reach
the goal, is the focus of this paper. Following Russell and
Wefald (1991), we aim to pose and solve this question as
a decision-theoretic metareasoning problem. However, even
this limited focus is too general to formalize, hence we make
additional metareasoning assumptions about the search pro-
cess:

1. The order of decision in the planner is a fixed search tree
structure, from early actions to later actions.

2. No replanning is permitted after action commitment, a de-
cision to commit to an action in the sequence means that
it will eventually be executed in the order specified.

3. We may re-start search at a new state if necessary, for ex-
ample, if the controlled system departs from our assump-
tion of determinism.
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4. The only question we address is when to ‘reroot the tree’
at a successor of the root, that is, should we do this before
it is necessary?

5. We assume a given expansion strategy that is not mod-
ified by the commitment strategy, other than by pruning
the parts of the search tree inconsistent with the action
commitments.

Note that the metareasoning assumptions are meant to de-
fine the constraints on the decision-making at the metarea-
soning level, rather than representing assumptions about the
domain or the planner. They are used to define the distribu-
tions and utilities. Nevertheless, in an actual implementation
the planner may deliberately act in a way that does not con-
form to the assumptions, especially when it is obvious that
better performance can be achieved by violating the assump-
tions. For example, it is possible, due to several commitment
decisions, to get a commitment queue containing a sequence
of actions that makes the agent walk in a loop. In such cases,
if this is observed before beginning to execute these actions,
it may decide to remove such a loop from the action queue,
even though this may not be admitted by the metareasoning
assumptions.

Periodically during the search, perhaps after each expan-
sion or periodically after a set of expansions, a metareason-
ing process decides between two options:

• commit to the current seemingly-best top-level action now
and re-root the search tree accordingly, or

• postpone the commitment and continue the current
search.

Note that if we always decide to postpone, eventually action
execution will reach the current root node state and force us
to commit to a next action.

Previous Work
The seminal work of Korf (1990) defined the problem setting
of single-agent real-time search, in which a fixed number
of expansions (or equivalently, amount of time) is allowed
for lookahead node expansions, after which the search must
commit to the next action to take and re-root the search tree.
His RTA* and LRTA* algorithms back up h values from the
lookahead frontier to inform the action choice, caching the
backed up values at every node to allow the heuristic infor-
mation to become more accurate over time and provably pre-
vent the search from becoming stuck in infinite loops. (The
LRTA* variant converges to the optimal h values.) These al-
gorithms were designed to be simple and amenable to anal-
ysis. They commit only to a single action, which means that
the lookahead of one iteration can have significant overlap
with the nodes visited in the previous iteration, depending
on the state space connectivity and the heuristic function.

The widely popular LSS-LRTA* algorithm (Koenig and
Sun 2008) takes a different approach, committing to the en-
tire sequence of actions leading to the most promising fron-
tier node. This reduces the re-generation of nodes seen dur-
ing the previous lookahead and reduces the overall overhead
of the search per executed action, but note that it also com-
mits the agent to certain actions, such as those at or near

the frontier, for which little lookahead has been performed
and for which the heuristic value of their resulting successor
state is their only attractive attribute.

The Dynamic f̂ algorithm (Kiesel, Burns, and Ruml
2015) modifies LSS-LRTA* in two ways. First, rather than
idling the planner for k − 1 time steps after committing to
k actions, Dynamic f̂ uses the entire time until all the com-
mitted actions have finished executing to perform lookahead
search. The amount of lookahead is thus adjusted dynami-
cally, rather than being fixed from the start. This often re-
sults in the next iteration having a sequence of more than k
actions to the best node on the search frontier, leading to a
virtuous circle of larger and larger lookahead. Second, rather
than expanding the frontier node with the lowest f value,
the algorithm computes an inadmissible heuristic ĥ, which
when added to g yields the inadmissible (but possibly more
accurate) total plan cost estimate f̂ . By selecting the node
with lowest f̂ , Dynamic f̂ tries to avoid being tempted by
shallow nodes whose admissible f values are low merely
because they haven’t been explored as deeply as others.

The stark contrast between the two fixed commitment
strategies of LRTA* (one action) and LSS-LRTA* and Dy-
namic f̂ (all the way to the frontier) raises the question of
whether a principled adaptive strategy can be found to de-
cide when to commit to an action. The first approach in this
direction was Decision-Theoretic A* (DTA*) (Russell and
Wefald 1991), which attempts to optimize GAT by period-
ically deciding whether to continue the current lookahead
search or commit to an action and re-root the tree. This is
done by estimating whether the improvement in decision
quality, measured by reduction in plan length, that is likely
to result from further search would outweigh the time re-
quired to do the further search itself. In the implementation
used for their experiments, training data was used to gather
statistics on how often, and by how much, heuristic estimates
tend to change as a results of further search. DTA* is not a
real-time search algorithm, in that it does not respect or con-
sider a time bound on lookahead. There is no requirement
that the system constantly be executing an action and it is
always permissible to deliberate further. Thus DTA* is ca-
pable of emulating A* and planning all the way to a goal
before committing to its first action. DTA* is based on the
less-performant depth-based lookahead of RTA* rather than
the f -based lookahead of LSS-LRTA*, but it pioneered the
deliberative metareasoning approach to action commitment.

The Mo’RTS algorithm of O’Ceallaigh and Ruml (2015)
is basically a modification of DTA* into a true real-time
search algorithm based on LSS-LRTA*. We focus here on its
action commitment strategy, called f̂PMR. It assumes that a
no-op ‘identity’ action is available in every state, which al-
lows the planner to continue searching from the same root.
Once the path from the root to the most promising frontier
node has been identified, f̂PMR considers each node in turn,
asking whether additional search would be worthwhile, and
stopping at the first node for which this appears true. How-
ever, f̂PMR does not offer a principled way to evaluate this
decision at each node. It estimates the benefit of search as
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the expected reduction in time-to-goal resulting from more
certain estimates of action cost, which seems reasonable.
However, it is much harder to asses the costs of stopping the
re-rooting process short of the frontier. The f̂PMR method
uses the time required to regenerate the path from the node
to the frontier, which, as the authors note, is not particularly
reasonable because this repeated work would likely happen
concurrently with execution, not affecting the goal achieve-
ment time directly at all. This leaves the approach funda-
mentally unsatisfying.

In this work, we propose what we believe to be a more
principled metareasoning scheme for action commitment,
which we call Flexible Action Commitment Search (FACS).
We integrate FACS into Dynamic f̂ and assess its behavior
using three challenging grid pathfinding scenarios specially
designed to stress real-time search in different ways.

Metareasoning for Action Commitment
Our objective is to minimize GAT. Thus g, h, and f values
in the state space will represent the duration of actions and
the total utility of a final outcome is exactly the sum of ac-
tion costs/durations taken to reach the achieved goal state.
So optimizing f directly optimizes total utility.

The metareasoning problem of heuristic search can be
conceptualized as a POMDP in which each state represents
an entire state space graph, complete with costs on every arc
and h values at every vertex. To avoid confusion in this dis-
cussion, we will use the term ‘vertex’ for a node in the state
space graph and the term ‘state’ for a state in the POMDP.
The search does not know which exact state space graph it is
dealing with, thus its situation is captured by a belief distri-
bution over states. Every node expansion action results in an
observation that rules out those state space graphs that are
inconsistent with the vertices, action costs, and h values that
are generated. The action of expanding a node is stochas-
tic in that the search does not know in advance which new
nodes, actions costs, and h values will be observed, so there
are many possible belief distributions resulting from every
expansion. The action of committing to an action and re-
rooting the search tree at a new vertex is deterministic, as
it does not yield new information. A goal in the POMDP is
a belief that has positive support only on state spaces that
all share the same path from the initial vertex to a goal ver-
tex, providing a solution to the original problem but poten-
tially harboring remaining uncertainty about the unseen por-
tions of the graph. A policy for the POMDP corresponds
to a search strategy, as it would prescribe an action for the
search to take at every reachable belief state. Solving the
POMDP for a policy that, for example, minimizes expected
solution length would give a heuristic search strategy that
finds a solution as quickly as possible by minimizing the ex-
pected number of expansions. Approaching such a problem
in practice depends crucially on exploiting structure in the h
values, the arc costs, and the distance to the nearest goal.

It is not feasible to solve this POMDP, or even to find a
reliable approximation of its solution using standard approx-
imation methods. Therefore, we propose a myopic metarea-
soning scheme that only considers the next action commit-

(a) (b)

Figure 1: Committing vs not committing.

ment decision. In this formulation, one of the following two
options need to be chosen:

• Commit to the action with the best (least) estimated f̂ -
value among all children of the current root node. We de-
note the node that corresponds to this action by α.

• Do not commit to α yet, and spend more time searching
before deciding which action to take next.

Prematurely committing to α might reduce the quality of
the solution. For example, if α leads to a dead-end and the
search algorithm has failed to figured that out before com-
mitting, then it would be forced to turn around eventually,
which would result in a solution with an increased cost.
On the other hand, by gaining additional search time before
making consequent decisions the search algorithm might be
able to avoid future dead-ends or pitfalls, which would not
have been possible to avoid otherwise. Thus, the utility of
committing to α or not committing to α should depend in
part on our certainty regarding the f̂ -value of α.

The Effect of Committing
Let P ds (x) be the predicted probability of having the belief
that f̂(s) = x given dmore node expansions of search under
node s. Denote byXd

s the random variable distributed as P ds .
We begin with several additional simplifying assump-

tions:
1. Each node has exactly two children (a branching factor

of 2), α and β, where α is the node with the highest ex-
pected utility (lowest expected f̂ -value); we will relax this
assumption in the next subsection.

2. The time df required to fully execute an action is identical
for all actions; this assumption will also be relaxed later.

3. When searching under a node s, the search time is evenly
divided among all of its children.

4. The Xd
s random variables are independent for all d and s.

Under the above assumptions, we can now estimate the
utility of committing to and of not committing to α. In Fig-
ure 1(a), we show the current search tree rooted at node s.
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The available search time consists of the remaining time dr
induced by previous commitments and df , the time required
to execute a full action α or β (see the the top red time line
in Figure 1(b)). By committing to α, the agent would be able
to invest all of the available search time to search under the
children of α (the bottom red time line in Figure 1(b), start-
ing with the word “commit”). We denote the children of α
as αα and αβ (again, see the search tree in Figure 1(a)).
Since we assume that search time is evenly divided between
αα and αβ, each of them receives a search duration budget
of d =

dr+df
2 . Thus, the utility estimate of committing to

α (denoted as Ucommit) can be defined as the expectation of
the minimum f̂ -value of αα and αβ, after searching d time
units under each of them:

Ucommit = E
[
min(Xd

αα, X
d
αβ)
]

(1)

If the agent chooses not to commit yet (commit later), the
remaining time dr will be used to search under current root s
(see the middle red time line in Figure 1(b), starting with the
words “don’t commit”). Thus half of dr (dr2 ) will be used to
search under each child of the root. Even though α is initially
estimated to have the lowest f̂ -value among the children of
the root, this estimation can change after searching for dr

2

time under α and β. In essence, the new f̂ -value estimation
of α, induced by the additional search, can be greater than
the new f̂ -value estimation of β. Thus, the rest of the time
line (df ) is used for searching under whichever child of the
root is judged most promising at that time (again, see the
middle red time line in Figure 1(b), starting with the words
“don’t commit”). As a result, the search duration under each
grandchild of the current most promising child (either α or

β) will be d′ =
dr
2 +df

2 . In our simplification, the branching
factor is 2, so:
Case 1: after dr2 time spent searching under α and β, we will
believe that f̂(α) ≤ f̂(β). In this case, the rest of the search
time would be invested under α:

Uα = E
[
min(Xd′

αα, X
d′
αβ)
]

(2)

Case 2: after dr2 time spent searching under α and β, we will
believe f̂(α) > f̂(β). Symmetrically to the previous case,
here the rest of the search time would be invested under β:

Uβ = E
[
min(Xd′

βα, X
d′
ββ)
]

(3)

Then, we can estimate the overall utility of committing later
by weighting the probability of α and β to become the most-
promising nodes after the initial search time with their corre-
sponding utilities. The probability of α becoming the most-
promising child (choosing to commit to α) can be defined as
follows:

Pchoose α = P ((X
dr
2
α −X

dr
2

β ) < 0) (4)

The utility of not committing at t′ denoted U t
′

don’t commit can
be estimated as:

Udon’t commit = Pchoose α · Uα + (1− Pchoose α) · Uβ (5)

Using these equations, the metareasoning scheme simply
needs to compute the utility of committing to α (Equation 1)
and not committing toα (Equation 5), and to choose the met-
alevel action with the highest utility (lowest expected cost).

A Conceptual Example

In Figure 1, suppose that after the search, we obtain the ex-
pected cost under each leaf node, so we have f̂αα = 3,
f̂αβ = 5, f̂βα = 4, f̂ββ = 6. And we also have f̂α = 3,
f̂β = 4 simply by backing-up from their best child node αα
and βα respectively. We are at the root node s and want to
decide whether to commit to the current best action and re-
root the search at α or not commit and keep searching under
s. Suppose further that the expansion rate is 10 expansions
per action duration, and that the action c leading to s is cur-
rently 5 expansions from completing execution. In this case,
dr = 5 and df = 10.

If we choose to commit, the total 15 expansions will be
used to perform search under α, so αα and αβ both gain
7.5 expansions under our even division search time assump-
tion. Now we can obtain the belief distribution for the fu-
ture f̂ -value after search via Equation 10 (discussed below):
X7.5
αα ∼ N (3, 0.4), X7.5

αβ ∼ N (5, 2.0). Then by applying
Equation 1, we get the Ucommit = 3.2. This can be cal-
culated directly using the closed-form formula for the mini-
mum of two normally distributed random variables (Nadara-
jah and Kotz 2008).

If we choose not to commit, we have two search phases:
before and after c completes. In the first phase, we still
search sub-trees under both α and β, so both gain dr/2 =
2.5 expansions. Because the system can not be left uncon-
trolled, we are forced to commit when c completes. So in
the second phase, after c completes, the search will only
expand nodes either under α or β with df = 10 expan-
sions. Thus we have d′ = (2.5 + 10)/2 = 6.25 expansions
for each leaf node. To compute Uα, now we can again ob-
tain the belief distribution of future f̂ -value by Equation 10:
X6.25
αα ∼ N (3, 0.2), X6.25

αβ ∼ N (5, 1.5). Equation 2 can
give us Uα = 3.1. The same computation can be applied to
the β subtree to getX6.25

βα ∼ N (4, 0.1),X6.25
ββ ∼ N (6, 1.3),

and Uβ = 4.2. By Equation 4, say we get Pchooseα = 0.7,
then we can have Udon′tcommit = 0.7 × 3.1 + 0.3 × 4.2 =
3.43. In this case, the meta-level decision is to commit since
it results in the lowest expected cost of 3.2.

Relaxing the Assumptions

In order to relax the branching factor 2 and the identical ac-
tion duration assumptions, we make the following modifica-
tions. Let Children(x) be the set of children of node x, let
b = |Children(root)|, and let da be the duration of action
a. First, the search times d and d′ needs to be updated with

respect to b as follows: d = dr+dα
b , d′(a) =

dr
b +da
b . Note

that now d′ is a function of the action chosen to be taken
from the root. Then, the utility functions need to be updated.
The utility of committing (Equation 1) should be generalized
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to:

Ucommit = E
[

min
c∈Children(α)

Xd
c

]
(6)

The utility of searching d′ time under node c (generalization
of equations 2 and 3):

Uc = E
[

min
c′∈Childrenc

X
d′(c)
c′

]
(7)

The probability of choosing node c after searching d′ time
under each child of the root is:

Pchoose c = P ( argmin
c′∈Children(root)

X
dr
b

c′ = X
dr
b
c ) (8)

Thus, the utility of not committing (generalization of Equa-
tion 5) becomes:

Udon’t commit =
∏

c∈Children(root)
Pchoose c · U t

′
c (9)

Defining the P d
s (x) Distributions

The P ds (x) distributions should reflect the effect of search
effort under nodes given d more node expansions. Specifi-
cally, the more we search under a node, the more likely that
our estimation of its f̂ value will change and get closer to its
true value. In addition, we assume that the closer a node is
to a goal, the more accurate the original estimation of its f̂
value. Finally, the average heuristic error on the path which
leads to s from the root, ε̄s, can be used as an indicator of
the quality of the f̂ value estimation of s. Thus, the variance
of P ds (x) should grow proportionally to d and ε̄s, and the
distance-to-go estimation of s. Let dtg(s) be the distance-
to-go estimation of node s, ed be the average expansion de-
lay which measures the number of node expansions from the
moment a node is generated until it is expanded (Cashmore
et al. 2018). We model P ds (x) as a normal distribution in the
following way:

P ds = N (f̂(s), (ε̄s · dtg(s))2 ·min(1,
d
ed

dtg(s)
)) (10)

The mean of the distribution is the current cost-to-goal esti-
mation, f̂(s). For an initial estimate of the variance we use
the square of the heuristic error multiplied by the distance-
to-goal of s. This uncertainty value is modeled as being re-
duced according to the fraction of the distance to the goal
that we expect to explore using d node expansions (d di-
vided by the expansion delay gives the distance explored).
If the expected exploration depth surpasses the estimated
distance-to-go, we clamp the fraction at 1.

To summarize, our Flexible Action Commitment Search
(FACS) approach uses the P ds estimates about how the plan-
ner’s beliefs about α and β will change after search in or-
der to estimate Ucommit and Udon’t commit and hence decide
whether to commit to α or continue searching.

@
Start

Goal

Figure 2: Schematics of grid benchmarks with tar pits.

Empirical Evaluation
Although our approach seems to be a more principled com-
mitment strategy when all of its assumptions hold, given
the fixed approaches in previous work, it remains to be
seen how it performs in practice. In this section, we in-
tegrate FACS into Dynamic f̂ and empirically evaluate it
against three baselines: original LSS-LRTA* (i.e., commit-
all), LSS-LRTA* with commit-one, and Dynamic f̂ (i.e.,
commit-all with dynamic lookahead).

Synthetic Grid Pathfinding Domain
We implemented all real-time search agents in a synthetic
grid pathfinding domain using the Euclidean distance heuris-
tic. Figure 2 shows a schematic view of a tricky instance of
our novel variant of the classic grid pathfinding problem,
specially contrived to challenge real-time search. The black
areas are the obstacles. The red patches are ‘tar pits’, cells
for which the cost of moving to an adjacent empty cell is
very high (i.e., high cost for stepping out from a ’tar pit’).
With this setting, there will be a high cost if an agent com-
mits to an action that steps into a pit, as the agent would
have to step out of it in order to reach the goal. Note that the
admissible heuristic function does not take these costs into
account. Therefore, the agent has to be very careful about
its commitment decisions. The small red tar pits are very
common in the left part of the map, so a search’s lookahead
frontier will have a high probability of including at least one,
possibly even as the best node. Thus, we expect an agent
with a strategy that commits all the way to the frontier to be
fairly likely to step into a tar pit at some point. In the mid-
dle, we have a long empty area. Since in this area there are no
traps or mazes, algorithms can safely commit and re-root the
search to the frontier nodes in order to gain search time for
the future. In contrast, algorithms that conservatively com-
mit only to one action at a time and re-root the search tree
at every step cannot benefit from such gains in future search
time. On the right side of the map, we have a corridor setting.
Again, the red region is a large tar pit, where there is a small
cost of stepping into this area, but a large cost of getting out
of it. If agents do not have sufficient lookahead to observe
that the red region is a high cost local minimum, they are
likely to be tempted to get into this large tar pit, as it will
seem to be a shorter path to the goal because we sample the
goal position from the lower rows and sample the entrance
of the corridor from upper rows so that the agent must go
against the Euclidean heuristic to enter the upper corridor.
However, with a sufficiently large lookahead, agents can de-
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Figure 3: Goal achievement time as a function of search
speed in grid pathfinding with tar pits near the start.

tect that this tar pit is a dead-end and avoid stepping into
it altogether. Therefore, we expect agents that accumulate
search time (i.e., lookahead) during the middle empty region
to be able to utilize it to avoid the large tar pit. In the next
section, we show results for maps that only have the left-side
tar pits, maps that only have the right-side corridor and pit,
and maps with both left-side and right-side pits.

Experiments
All algorithms were implemented in C++ and run on 64-
bit Linux systems with 3.16 GHz Intel E8500 processors
and 8 GB of RAM. We used grid maps of 50 rows and 200
columns. For each map, we set the start in the left-most col-
umn and goal in the right-most column, randomizing the row
numbers of the start position and goal position to generate
100 problem instances. We used lookahead limits of 4, 10,
30, 100, and 300 expanded nodes per action (i.e., the rela-
tive search vs action execution speed), shown in the x axis
of each plot in Figures 3-5. We set the cost of stepping out
of a tar pit as 1,000 expansions. The y axis shows GAT, nor-
malized as a factor of the GAT of a clairvoyant agent that
immediately commits to an optimal plan without searching.
Error bars show 95% confidence intervals on the mean over
all the instances. The legends are sorted by the geometric
mean across all lookahead limits.

Figure 3 shows the result of grid pathfinding problems
with tar pits near the start. FACS preforms consistently close
to clairvoyant across all search speeds. The commit-one
strategy is also very competitive at low search speed, due
to its conservative commitment strategy that helps the agent
avoid stepping into tar pits. The Dynamic f̂ and commit-all
strategies are both far from optimal in this map, with dy-
namic f̂ stepping less frequently into tar pits as it accumu-
lates a slightly longer lookahead by the time it reaches the
tar pit field.

Figure 4, shows results for maps with a corridor field near
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Figure 4: GAT with corridor and tar pit near the goal.
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Figure 5: GAT with tar pits at both ends.

the goal. Both FACS and dynamic f̂ perform close to clair-
voyant since they take advantage of accumulating search
time in the empty area and thus have a lookahead that is
large enough to detect the dead-end and avoid stepping into
the high-cost trap area. Both variants of LSS-LRTA* are un-
able to detect the dead-end with lookahead limit below 30.

In Figure 5, we show the results for maps with tar pits
both near the start and near the goal. FACS is able to sur-
vive both the tar pit field and corridor field, with a conser-
vative commitment strategy initially, adapting to an aggres-
sive commitment strategy in the empty area, and having a
sufficiently large lookahead to avoid the large tar pit when
reaching the corridor.

Discussion
We have suggested an approximate metareasoning scheme
for action commitment geared at focusing a real-time search,
in order to get additional time to search farther ahead in the
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search tree. Our scheme involves some domain assumptions,
as well as several metareasoning assumptions. While FACS
performed well in our contrived grid pathfinding domain,
further experiments are necessary to characterize when its
assumptions lead to poor behavior, thereby guiding further
theoretical work.

Possible Extensions
Typically, metareasoning assumptions are not true limita-
tions. Instead, these are just a way to simplify the semantics
and computation of expected utilities for the search. The in-
dependence assumption falls in this category; it is made so
that we can have an easy-to-compute estimate, even though
in practice it does not hold.

Our treatment of action commitment is in a different cate-
gory. As mentioned above, if we observe that we have com-
mitted to a set actions that will lead us through a loop in the
path, it is clear that this sequence of actions achieves noth-
ing, except a delay. Even in such cases, this delay may be
useful as it can be used to do additional search before phys-
ically reaching a possible trap (Cserna, Ruml, and Frank
2017). It thus is a non-trivial issue when we might wish to
un-commit actions, even in such a seemingly simple case.

We might also wish to un-commit actions when we ob-
serve that the predicted f-costs resulting from deeper search
are much worse than those initially projected. In such cases
where actual action execution has not reached such an unex-
pectedly bad state, it may be better to un-commit actions and
expand nodes that seemed worse and pruned by the commit-
ments earlier on. When it might be good to do that is another
non-trivial issue.

Re-examination of the set of assumptions about the search
process is also needed, especially if we use a completely
different search component in the online setting. Of special
interest is the effect of using envelope search (Björnsson,
Bulitko, and Sturtevant 2009; Gall, Cserna, and Ruml 2020)
or Monte-Carlo tree search (MCTS) (Browne et al. 2012;
Schulte and Keller 2014) on both the metareasoning deci-
sions and on actual performance.

Last but not least are low-hanging fruit relating to addi-
tional experimentation with parameters of the scheme de-
veloped in this work. One issue is varying the frequency at
which we perform metareasoning independently from the
expansion rate. Is it better to perform metareasoning after
each expansion (possibly more precise but a large overhead),
once per real-world action, or only after search phase fin-
ishes, as done in the empirical evaluation in this paper?

Summary
This paper introduces FACS, a basic metareasoning scheme
for action commitment geared at focusing a real-time search
in order to get additional time to search farther ahead in
the search tree. Due to numerous assumptions and decisions
needed in order to simplify the analysis that might have been
done differently, this is preliminary work that has consider-
able room for expansion. Nevertheless, favorable empirical
results in contrived grid pathfinding scenarios show that this
approach has promise and could lead to a principled treat-

ment of one of the most fundamental issues on online plan-
ning and execution.
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Abstract

Classical planning takes a pansophical view of the world: ev-
erything is fully known, observed, and static. While there are
extensions to partial observability, this leapfrogs an impor-
tant intermediate step of embodied agent design: egocentric-
ity. In this work, we propose a semi-automated mechanism
that allows planning domain designers to convert classical
planning problems into an egocentric alternative. The gen-
erated planning problems are classical as well, and we intro-
duce an open-loop replanning mechanism that progressively
explores the egocentric space until the original goal is solved
(or deemed unsolvable). Our work serves as a crucial first
step towards embodied agents that can be equipped with an
appropriately specified egocentric version of known environ-
ment dynamics.

1 Introduction
Most classical planning problems are defined with a pan-
sophical reference frame where the environment is fully ob-
servable. However, in many planning tasks, an agent only
has a limited view of the environment. Existing approaches
on partially observable planning problems, such as con-
formant or contingent planning, use belief states to repre-
sent uncertainty in the environment (Hoffmann and Braf-
man 2005; 2006). However, representing belief states of-
ten requires access to information such as what objects are
present in the environment in advance. Many planning ap-
plications do not provide access to such information. These
types of egocentric agents often need to incorporate explo-
ration in the strategy (James, Rosman, and Konidaris 2019).
Egocentricity can also be necessary for embedded agents to
transfer skills across environments (Charniak 2020). Often,
solving a planning problem egocentrically requires manual
conversion by a domain expert. The conversion process can
be time-consuming, sometimes requiring the definition of a
new set of syntax. A standardized semi-automatic approach
can lift the burden of manual conversion, decreasing the hur-
dle of egocentric planning research and open up the door to
domain-independent planning techniques to this setting.

We propose a novel semi-automatic approach that can
convert classic planning problems defined in PDDL into
egocentric alternatives. Our method takes a set of user-
defined object types with their initial states as input, and
outputs the egocentric version of the original problem. We

assume that the world is made up of objects. Thus predi-
cates define all objects’ states and relationships. By defin-
ing which objects can be observed by an egocentric agent,
we can extract the observable state space from the corre-
sponding predicates. We use an exploration algorithm that
searches through the original problem’s state space until
a plan is found or deemed impossible. The iterative ex-
ploration is facilitated by an open-loop replanning mech-
anism, which progressively updates the observable state
space. Thus, our overall framework consists of two interact-
ing processes: one determines which set of fluents are ob-
servable, and the other explores the unobserved state spaces.

The egocentric planning sub-problems generated by our
approach can be solved using off-the-shelf planners. Our
algorithm also keeps syntax and vocabularies consistent
with the original planning problem, making results easily
interpretable. We test the validity of our approach by us-
ing it on five classical planning problems and correspond-
ing egocentric interpretations of them. Our experimental
results demonstrate that our approach is practical through
both quantitative and qualitative evaluations. To the best of
our knowledge, there has not been any attempt to semi-
automatically convert classic pansophical planning prob-
lems into egocentric alternatives. More complex or domain-
specific problems may require further modification of our
proposed approach. Nevertheless, we believe this work is an
important step forward that can encourage more automated
planning research in egocentric settings.

In the following sections, we provide preliminary defini-
tions and a detailed outline of our framework, followed by
descriptions of our experimental setup and a discussion of
the results. In addition, we provide a step by step example
of our approach using a simple grid based planning problem.
Finally, we will conclude this paper with a summary of our
work and possible future directions.

2 Preliminaries
Modified STRIPS Notation
We extend the commonly used STRIPS notation to include
the notion of objects. In STRIPS, a planning problem is
defined with a tuple 〈F , I ,A,G〉. F is a set of fluents,
I ⊆ F is the initial state of the world, and G ⊆ F is the
goal state. A is the set of actions available. For each action
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a ⊆ A,PRE(a) ⊆ F is the precondition of that action,
ADD(a) ⊆ F is the add effect, and DEL(a) ⊆ F is the
delete effect. Our method operates over planning problems
specified in PDDL. Therefore, we consider fluents to be rep-
resented by predicates with typed objects. We define a set
O to be the set of objects in each planning problem. We in-
clude O in the STRIPS problem, and our complete planning
problem is defined as a tuple P = 〈O,F , I , A,G〉.

We will demonstrate our approach using the standard lan-
guage for specifying automated planning problems, PDDL
(Haslum et al. 2019). The details of the PDDL language are
beyond the scope of this paper, and we refer the interested
reader to (Haslum et al. 2019) for a complete discussion.

Grid Navigation Example
We use a 2D navigation problem specified in PDDL as an ex-
ample to illustrate our approaches throughout this paper. The
problem is the simplified version of the Search-and-Rescue
problem (Teichteil-Königsbuch and Fabiani 2007). In this
planning problem, an agent is spawned on a 2D grid, and its
goal is to search and pick up a person and then navigate to
the hospital. The planning problem includes 4 object types:
a robot object, location objects, a person object, and a hospi-
tal object. The predicates include object location predicates,
connection predicates connecting locations, and a holding
predicate indicating whether an agent is holding a person.
The action set includes moving to another location and pick-
ing up the person. A visual illustration of the problem with
the corresponding PDDL definitions are shown in Figures 1
and 2.

Figure 1: Graphical illustration for Search-and-Rescue

3 Approach
For a planning problem to be egocentric, only parts of the
state space are observable. We can construct an egocen-
tric planning problem P

′
= 〈O′

, F
′
, I

′
, A

′
, G

′〉 from the
original pansophical planning problem by finding the cor-
responding subsets for each element in P . 〈O′

, F
′
, I

′〉 are
the egocentric version of the problem’s objects, fluents and
initial states. Their value depends on an agent’s observable
state space. A

′
is the set of actions available to the egocen-

tric agent. It contains actions in the original pansophical set
A with additional actions required for exploration. G

′
is the

Figure 2: PDDL for Search-and-Rescue

goal of the egocentric agent, which is to gather informa-
tion until the original goal G can be achieved. The objec-
tives of our approach are to determine the current egocentric
state and to facilitate exploration. We separate these tasks
into two separate algorithms. The first algorithm extracts the
observable states from an pansophical planning state space.
We call this algorithm the Egocentric Subset Extractor, or
ESE. The second algorithm facilitates exploration and in-
formation gathering in an partially observable environment.
We call this component the Iterative Exploration via Replan-
ning, or IER. The subsequent sections will motivate and de-
scribe both algorithms in detail, followed by a demonstrated
example of our approach on the grid world domain.

Egocentric Subset Extractor
The ESE algorithm determines which fluents in the pan-
sophical planning problem are observable. We adopt an
object-centric view of the world and assume objects’
states/relationships are represented by fluents in the form of
object typed predicates. Thus, if we can determine which
set of objects are observable by an agent, we can find the
corresponding set of fluents that are also observable. The
visibility of certain objects depends on the agent’s egocen-
tric state, and we refer to these as anchor objects. The ESE
algorithm determines which subset of fluents in the initial
set in a planning problem P = 〈O,F , I , A,G〉 should be
included in the egocentric problem.

Our approach requires the user to determine the type and
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the initial set of observable objects. We define this set S as a
tuple 〈T,C,R〉. T contains the anchoring object types, and
C is a set of anchor objects currently observable. R is de-
fined as a set of predicates that connect one anchor object
to another. We make the following four assumptions for our
approach:

1. We can uniquely determine a planning problem’s egocen-
tric aspects by way of the observable anchor objects.

2. If an object is observable, then its states and relationships
with other objects, in the form of predicates, are also ob-
servable.

3. Any predicates that do not contain any anchor objects are
always observable.

4. There exist a set of predicates that define connections or
relations among anchor objects.

The first assumption is a direct result of adopting an
object-centric view of the world. The second assumption al-
lows us to determine which fluents in the form of predicates
are observable. Intuitively, predicates represent the state and
relationship among objects. Thus any predicates that contain
observable objects should also be observable. For the third
assumption, if a predicate contains no anchor objects, its
observability is independent of an agent’s egocentric state.
We assume these predicates should always be observable by
the agent. Finally, we assume anchor objects are connected
via relational predicates. Agents should be able to observe
other anchor objects that are immediately related to the cur-
rent set of anchor objects. These related anchor objects are
used to determine where the agent need to explore, which we
will discuss in a later section. Our ESE algorithm first iter-
ates through all the relational predicates of type R to extract
observable relational predicates and their anchor objects. It
then extracts all the non-relational predicates that are either
always observable or containing observable anchor objects.
The extracted predicates define the egocentric state of the
agent. The full ESE algorithm is shown in Algorithm 1.

In the grid example, the user needs to define a set of ini-
tial observable anchor objects, anchor types and relational
predicates, S = 〈T,C,R〉. Anchor objects in this prob-
lem are the location objects. The relational predicates are
(conn ). Initially, only f0-0f is observable by the agent.
The ESE algorithm first extracts all the relational predicates
containing f0-0f. The algorithm then finds all location ob-
jects related to the f0-0f which are f0-1f and f1-0f.
Next, the ESE algorithm extracts non-relational predicates
in initial state I that contains f0-0f, f1-0f, f0-1f.
(robot-at robot0 f0-0f) is extracted as a result.
Finally, all fluents contain no location objects are considered
observable and are also extracted. The egocentric initial state
I

′
is shown in Figure 3.

Iterative Exploration via Replanning
An egocentric agent can only observe a subset of the whole
state space. Thus, a way to explore an unknown environ-
ment is often required to formulate a plan. An exploration
strategy must identify which part of the state space needs

Algorithm 1: Egocentric Subset Extractor

Input: P = 〈O,F , I , A,G〉
Anchor Object Set S = 〈T,C,R〉
Output: Egocentric projection P

′

1 Initialize O
′
= ∅ and I

′
= ∅;

2 for p ∈ I where type(p) ∈ R do
3 if p has object o ∈ C then
4 for o ∈ p do
5 if type(o) ∈ T then
6 O

′
= O

′ ∪ {o};

7 for p ∈ I where type(p) /∈ R do
8 if p has o ∈ O′

or p is constant then
9 I

′
= I

′ ∪ {p};
10 for o ∈ p do
11 O

′
= O

′ ∪ {o};

12 F
′
= F ;

13 A
′
= A;

14 G
′
= G;

15 return P
′

= 〈O′
, F

′
, I

′
, A

′
, G

′〉;

to be explored while keeping track of state information ob-
served previously. Our Iterative Exploration via Replanning
(IER) algorithm is such an approach that progressively ex-
plores unknown or partially known environments. We de-
signed IER to generate and modify existing PDDL files di-
rectly. As a result, we can use off-the-shelf planners directly.

In addition to P
′
= 〈O′

, F
′
, I

′
, A

′
, G

′〉 generated by the
ESE algorithm, IER requires the user to identify an addi-
tional set of exploration actions, E, as input. We define ex-
ploration actions as actions that an agent needs to change its
current observed state space.

By taking actions in E, an agent will transit to a state
where new objects and fluents are observable.

An exploration action a must have at least one anchor-
ing object in its parameters. Both PRE(a) and ADD(a) ∪
DEL(a) must also have predicates containing these an-
choring objects. To distinguish between observed and un-
observed objects, we create (unknown ?obj) predicates
to identify unobserved objects. For an exploration action a,
(unknown o) predicates are added to PRE(a) for each
anchor object, o, declared in the parameters set. After the
action is taken, the unknown object is deemed to be revealed
and will be removed using DEL(a).

When a plan with the original goal cannot be found,
our algorithm sets exploration as a goal. We achieve
this by introducing an (exploration) predicate to re-
place the original goal state. Since exploration is achieved
through exploration actions in E, we need to add the
(exploration) goal predicate to ADD(a) for each a ∈
E. After an exploration step, a new planning problem P

′

is generated using ESE. These steps are repeated iteratively
through replanning until a plan for the original goal can be
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Figure 3: Initial condition extracted by ESE

found. IER is shown in detail in Algorithm 2.
In the grid example, the action required for the

agent to move to another egocentric state is the
move-robot action. IER first iterates through all
the fluents in the initial condition set I

′
and identifies

unknown locations by adding (unknown f1-0f)
and (unknown f0-1f) fluents. To make an explo-
ration action, IER creates a new action explore by
adding (unknown location) in move-robot’s
precondition, (not (unknown location))
and (explored) predicates in its effect set. The
exploration action is illustrated in Figure 4. Since no
plan can be found for G

′
, we replace the goal state with

G
′

= {(explored)}. This forces the agent to move
to another location to gather more information about the
broader environment. In the next iteration, the ESE algo-
rithm will extract a new set of observable objects followed
by IER until a plan with the original goal can be found or
the problem is deemed unsolvable.

Figure 4: An exploration action example

4 Evaluation
We tested our approach empirically on five classical plan-
ning domains written in PDDL. These domains are Blocks
World, Minecraft, Search-and-Rescue, Sokoban, and Eleva-
tors. In addition, we used classical planning problems de-

Algorithm 2: Iterative Exploration via Replanning

Input: Problem P = 〈O,F , I , A,G〉
Anchor object set S = 〈T,C,R〉
Exploration action set E
Output: Plan M for the pansophical environment

1 Initialize Oe, Fe, Ie, Ae, Ge = ∅;
2 plan M = [ ];
3 while no plan can be found for P do
4 Oe = O;
5 Ae = A;
6 for o ∈ O do
7 if type(o) ∈ T and o 6∈ C then
8 Ie = Ie ∪ { (unknown o) };
9 for a ∈ E do

10 a
′
= a.copy();

11 PRE(a
′
) = PRE(a

′
) ∪ (unknown o)

12 DEL(a
′
) = DEL(a

′
) ∪ (unknown o)

13 ADD(a
′
) = ADD(a

′
) ∪ (explored)

14 Ae = Ae ∪ a′

15 Ge = {(explored)};
16 Fe = F ∪ Ie ∪Ge;
17 π = SOLVE(〈Oe, Fe, Ie, Ae, Ge〉);
18 M.extend(π);
19 for a ∈ π do
20 if a ∈ E then
21 add anchor objects in a to C;

22 Ie = PROGRESS(Ie, π) ;
23 Ge = G;
24 P = ESE(〈Oe, Fe, Ie, Ae, Ge〉, 〈T,C,R〉);
25 M.extend(SOLVE(P ));
26 return M;

fined in the PDDLGym libarary(Silver and Chitnis 2020),
which contains domain and problem files written in PDDL,
along with visualization APIs. For each planning problem,
the user only needs to add the (unknown ?obj) predi-
cate, the (explored ) predicate, and the exploration ac-
tions. No modifications are needed for the problem file. It
takes only several minutes for manual conversion if the user
is already familiar with the domain and PDDL modelling in
general.

For each planning domain, we tested five different prob-
lem setups. The results are summarized in Table 1. We eval-
uate the performance based on the percentage of successful
conversions from an pansophical planning problem to the
egocentric alternative. In addition, we compared the average
number of steps required for the egocentric agent to solve
a planning problem. We used Tarski(Ramı́rez and Francès
2021) to parse each planning domain, and the actual plan-
ning is done on the Planning.Domains online solver (Muise
2016): http://solver.planning.domains.

The results show that our method can successfully con-
vert most classical planning problems to an egocentric ver-
sion. For Search-and-Rescue, Sokoban and Blocks World,
our algorithm can successfully convert 100% of the testing
problems. In the case of Sokoban, we were able to covert
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Success Egocentric Pansophical
Rate Plan Len Plan Len

Search-&-Resc. 100% 26 10
Blocks World 100% 16 11
Elevator 100% 29 22
Sokoban 75% 64 41
Minecraft 0% NA 27

Table 1: Results of tested planning domains

four out of five problems. Unlike the other four problems,
Sokoban contains irreversible actions that can result in dead-
ends. The failure occurred when the agent can no longer
achieve its original goal due to such actions. The only do-
main where our method is not applicable is Minecraft. Al-
though there is the notion of a grid location in Minecraft, the
agent can reach all locations in a single step. Our method
relies on connection predicates to facilitate gradual explo-
ration. If an agent can reach a state without passing through
any other state, our method will treat both states as visible
in the egocentric formulation.

5 Discussion
The experiments show that our algorithm can successfully
convert the Blocks World and the Elevator domains to ego-
centric equivalents. This demonstrates that our approach is
not limited to just agent navigation problems. Both Search-
and-Rescue and Sokoban are 2D navigation problems where
the notions of agent sand egocentricity are apparent. In
both problems, agents are defined explicitly by the domain
designer as agent or robot objects. However, an ex-
plicit definition may not always be necessary. We can de-
fine agents as the set of actions that can change the observ-
able state. For example, in Blocks World this action set is
{stack, unstack}. Intuitively, the agent is whomever
that have the ability to move the blocks.

The location object is an obvious choice to define ego-
centricity in 2D navigation problems. However, defining it
for Blocks World is more challenging. The set of observable
states changes depending on the perspective of the observer.
Our solution adopts a (literal) top-down perspective, limit-
ing the observable state to only blocks that are on the top
of stacks. We define the block object as the anchor object.
Each block is connected via (on ?block1 ?block2)
connection predicates. We then set unstack action as the
exploration action. A block is considered explored when the
unstack is conducted. Our IER algorithm then extracts
a new block to explore using the (unknown ?block)
predicate. The Blocks World formulation shows as long as
all required inputs can be satisfied, our method can convert
a planning domain without an explicit definition of an agent.

When the goal of a planning problem can no longer be
reached, the problem is considered unsolvable. Our method
treats exploration as a way to gather information about the
state-space independent of the original goal. Thus, such ex-
ploration could lead the agent to reach a dead-end where

the original goal is no longer reachable. For problems like
Search-and-Rescue and Blocks World, all actions are re-
versible, and the initial goal will always be solvable when
enough information is gathered. However, in Sokoban, the
agent can reach a dead-end via irreversible actions. For ex-
ample, when a block is pushed to a corner, the agent will not
be able to push the block back. In our implementation, our
agent does not consider the feasibility of the original goal
when exploring. One can avoid such situations via dead-end
checking algorithms, but only in situations where there is
sufficient information available to the agent for them to reli-
ably avoid these dead-ends.

One of the future directions we would like to take this
work is applying dead-end detection techniques such as
(Lipovetzky, Muise, and Geffner 2016) to avoid actions that
cause dead-ends. We want to integrate the agent’s original
goal with exploration for more goal oriented exploration
strategies. In this work, we only tested our method on classi-
cal planning domains. These domains are not representative
of real life planning settings. We want to eventually apply
our techniques in embodied egocentric agent design to solve
planning problems such as in (Shridhar et al. 2020).

6 Related Work
Defining the environment in an egocentric manner is im-
portant to many agent based applications. Charniak demon-
strates the utility of the egocentric view in reinforcement
learning in a Grid World setting (2020). They show that
the egocentric view improves the learning algorithm’s abil-
ity to apply the learned policy to new problems never before
seen during training. Zhang et al. proposed an egocentric
vision-based assistive co-robot system (2013). This work al-
lows humans to actively engage in control loops via egocen-
tric camera and gesture input. Bertasius, Chan, and Shi pre-
sented a generative adversarial network model that use first-
person images to generate a realistic basketball sequence via
egocentric motion planning (2018). All these defined plan-
ning and egocentricity in their respective domain-specific
settings. In contrast, our method focuses on egocentricity in
the classic domain-independent planning setting.

There exists work on planning under partial observabil-
ity, such as conformant, contingent, and epistemic plan-
ning. However, we distinguish egocentric planning from
these partial observable planning settings with regards to the
use of the belief space. Conformant can be interpreted as
classical planning in belief space, and contingent planning
adds uncertainty to the observable state space and can be
formulated as and-or search problems in the belief space
(Bonet and Geffner 2000; Hoffmann and Brafman 2005;
2006). Epistemic planning represents belief states as epis-
temic states which can be reasoned using epistemic logic
(Bolander 2017). Planners constructed for all of these par-
tially observable planning settings often require explicitly
defining the possible initial belief space. This requires the
users of these planners to have knowledge of all possible
objects that will be present in the planning problem, in ad-
vance. However, in many planning problems, an acting agent
might not have access to all unique objects in advance, and
new objects and relationships need to be discovered during
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exploration. For example, an egocentric agent that is navi-
gating in a 2D grid might not know all possible “location”
objects to formulate a proper belief state. The approach we
take here is to iteratively convert information the agent has
observed as a fully observable planning problem to deter-
mine whether the original goal can be reached or more ex-
ploration is needed. However, the fully observable planner
we used can be replaced by conformant, contingent, or epis-
temic planners when dealing with uncertainties with agents,
actions, or the environment. That is to say, those areas of
planning under partial observability are complementary to
our work, and may be incorporated in future work.

Some previous works have studied planning in open
worlds, a similar class of problems to the egocentric prob-
lems we define in this paper. Talamadupula et al. used a
hindsight optimization method to solve planning problems
in partially observable worlds (2010). The proposed method
uses a prior distribution to generate and aggregate sam-
ples of close-world problems that can be solved using an
off-the-shelf planner. Kiesel et al. proposed a novel partial-
satisfaction goal construct that allows predefined objects
to be discovered via replanning (2012). James, Rosman,
and Konidaris presented a framework that derives egocen-
tric views of planning problems for the purpose of learning
portable representations, sufficient for planning, of classes
of tasks (2019). These representations are learned from
traces of actions and transitions. Our work, however, de-
rives these views from the planning problem’s pansophical
description. The advantage is our approach does not require
training data. Jiang et al. introduces a method to identify and
reason over objects in an environment via a database (2019).
The approach converts open world problems to close world
settings via hypothetical instances of unknown objects. All
these works adopted assumptions about open-world prob-
lems that we expose via our approach to deriving egocentric
problems. However, these problems require complete refor-
mulation of close world planning domains via their respec-
tive specifications. To the best of our knowledge, we are the
first to propose a method to semi-automatically convert clas-
sical planning problems into an egocentric alternative with
relative ease.

7 Summary
In this work, we have proposed an open-loop replanning
method for converting classical pansophical planning prob-
lems into egocentric alternatives. Our method is semi-
automated and requires very little change to the original
problem. Our approach consists of an Egocentric Subset Ex-
tractor to extract the observable state space of an agent. It
also contains the Iterative Exploration via Replanning al-
gorithm that facilitates exploration in an unknown environ-
ment. We tested our method on five classical planning prob-
lems and converted most of these problems to their corre-
sponding egocentric versions. The results also demonstrate
that our approach is not limited to grid navigation prob-
lems such as Search-and-Rescue and Sokoban. It can con-
vert problems, such as Blocks World and Elevator, where
the notion of the agent is not explicitly defined. Our work
serves as a crucial first step towards embodied agents that

can be equipped with an appropriately specified egocentric
version of known environment dynamics.
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Abstract

Executing a Probabilistic Simple Temporal Network (PSTN)
amounts at scheduling, i.e. dispatch, a set of events un-
der time uncertainty. This constitutes a NP-hard online op-
timization problem. The right execution time must be dy-
namically assigned to each event of the PSTN such that the
temporal constraints are met, whereas activity durations are
progressively observed as the execution unfolds. We pro-
pose a dispatching algorithm based on Monte Carlo Tree
Search, called Lila, with the following characteristics: (i) it
is an anytime algorithm, both offline and online, conjectured
asymptotically optimal; (ii) it returns the current probabil-
ity of success, either before or at any moment during opera-
tions; (iii) it handles any possible continuous or discrete, even
non-parametric, probability distributions, as well as inter-
dependencies between random variables, exogenous and en-
dogenous uncertainty; and (iv) can be easily extended to
handle probabilistic external events, PSTNs with resources,
PSTNs with cutoff times and precondition chains, etc. Lila is
universal in the sense that it can handle any dispatching pro-
tocol, simply by specifying it to the algorithm. It has the un-
limited flexibility offered by the simulation paradigm, and is
conjectured to asymptotically converge to optimal decisions
and/or robustness approximations.

1 Introduction
Temporal networks formalize the arrangement and inter-
dependencies of tasks, or activities, that compose an oper-
ational plan. In a simple temporal network (STN), activities
are modelled as a finite set of time events, such as start and
end times. In practice, some activity durations, considered
as contingent, remain unknown beforehand and are revealed
during execution (decided by nature). When some stochastic
knowledge on the uncertain durations exists, one can model
it as (estimated) probability distributions, leading to the ex-
tending concept of probabilistic STN, or PSTN. Solving a
PSTN then amounts at finding an assignment of time values
to executable events, such that assigned values together with
observed ones fulfil all the constraints between events (e.g.,
end of task A must happen between 10 and 20 minutes be-
fore the beginning of B). Whenever such assignment exists,
a network is said to be controllable. When the operational
assumptions enable it, the assignment may be dynamically
constructed, i.e. as durations are observed, the time values

Figure 1: A simplified hypothetical sol on Mars for two
planetary rovers, encoded as a PSTN. Bold: controllable.
Dashed: contingent.

are assigned. Yet, even under dynamic decision, due to un-
fortunate durations, a network may reveal as violating some
of the temporal constraints during execution.

When there is uncertainty with respect to temporal con-
straint violation, it is critical to determine the actions (i.e.
assign time values to time events) that maximize the proba-
bility of successful execution. Furthermore, at a given state
of the online execution, determining the current probability
of success according to past decisions and events as well
as the remaining uncertainty is a major importance too. In
case this probability falls below some threshold of accept-
able risk, the operators may decide to interrupt the execution
before it reaches a problematic or dangerous state.

Fig. 1 shows an hypothetical example of Mars rovers
operations as a PSTN. Each rover has three activities in
sequence: drive towards a science site, perform a science
experiment, and relay results to an orbiter. A special time
point t0 = 0 represents the beginning of the operations.
Time events are linked by temporal constraints, either con-
trollable or contingent. The rovers work independently dur-
ing their driving and science activities, and eventually coor-
dinate for the communication time window, which strictly
happens within time 15 to 20. Furthermore, a maximum of
3 time units is authorized from the end of experiments to the
start of relay activities, implying that starting everything as
soon as possible may be problematic. The duration of the
driving and science activities are uncertain, and encoded in
the PSTN as contingent constraints described by probability
distributions. Ideally, a perfect assignment of all executable
time points would work for any situation imposed by na-
ture. In practice that is very restrictive, if not impossible,
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especially in highly uncertain environments. It raises the fol-
lowing questions. What is the probability that we succeed at
executing the PSTN, namely that our rovers both meet the
communication window? How to compute online decisions
in an optimal way, such that we maximize this probability?

Contributions. We describe how the MCTS framework
can be used in the context of scheduling time points in con-
strained temporal networks under uncertainty, namely PSTN
dispatching. To the best of our knowledge, this is the first ap-
plication of MCTS to temporal networks. Unlike mathemat-
ical approaches, or even those based on pure Monte Carlo
simulation, our method is an anytime algorithm; it is con-
jectures as asymptotically optimal (we let the demonstration
for future work), and allows to consider various extensions
to the classical PSTNs with minor adaptations. Moreover,
MCTS allows to simply handle very complicated concepts,
some of them being described in this section, such as de-
pendent random variables or even endogenous uncertainty
(which is a topic rarely covered in the literature). A prelimi-
nary experimental analysis is conducted.

2 Probabilistic Simple Temporal Networks
Simple Temporal Network is a popular formalism for tem-
poral constraint reasoning (Dechter, Meiri, and Pearl 1991),
framed as a constraint satisfaction problem over time point
variables: a STN is a tuple 〈T,C〉, where T is a set of
time points and C is a set of constraints c(ti, tj) that en-
code bounds on the differences between pairs of time points:
lij ≤ (tj − ti) ≤ uij , i.e. (tj − ti) ∈ [lij , uij ]. The goal is
then to assign time values to every time points, such that all
the tj − ti duration constraints are respected.

Most realistic operational contexts account for temporal
uncertainty. PSTN is a natural extension of STN in which
probability density functions are associated to temporal con-
straints, such as activity durations (Tsamardinos 2002). In a
PSTN, the executable time points TE are determined by the
agent, and contingent time points TC are assigned by nature.
A solution is called a schedule, a specific assignment to all
ti ∈ TE . Given a particular realization of TC , a schedule
is consistent if it satisfies all the constraints of the network.
In practice a contingent duration is described by a (usually
estimated) probability distribution (tj − ti) = Xi,j .

In practice, a time point in the PSTN often stands for ei-
ther the start (e.g. t3 in Fig. 1) or the end (t4) of a partic-
ular activity (Rover1::expe). The starting point of activities
usually constitute the set of executable time points TE . A
schedule determines the execution time of tj ∈ TE , and re-
quirement constraints in the form c(ti, tj) state how late tj
can occur regarding to any previous time points ti. When
tj ∈ TC , which could represent an activity completion, the
duration (tj − ti) remains unknown prior to execution.

Policies and Dispatching protocol. Operational contexts
such as space missions usually pose computational and
power limitations on recomputing a schedule in the middle
of the operations (Chi et al. 2019). Yet, the use of a static
schedule is often either impossible in practice, or comes with

a significant waste in terms of operational yield and time.
Such approach is currently operating Curiosity rover, with
static schedules that overestimate processing times by 30%
in average (Gaines et al. 2016) to account to execution un-
certainty. Let Ω be the set of all possible realizations of the
random contingent edges’ duration in the PSTN. A trivial
approach to avoid both static scheduling and online reopti-
mization is to precompute particular schedules for each pos-
sible situation that may arise, leading to a policy. Naturally,
the size of Ω is usually problematic. Instead, Perseverance
(M2020) rover is equipped with a non-backtracking onboard
scheduler, designed to take online decisions based on current
observations (Rabideau and Benowitz 2017; Chi et al. 2018;
Agrawal et al. 2021a,b). Due to computational limitations,
such online decisions must remain very light, thus following
a predefined strategy: a dispatching protocol (DP). In partic-
ular, a DP usually aims at avoiding costly online reoptimiza-
tions. For example, Rabideau and Benowitz (2017) describe
an average O(n2) quadratic DP(·) protocol to be computed
by the onboard scheduler in the Mars Perseverance rover, in
order to adapt decisions online (i.e. ΓtE = T tE) based on ob-
servations and pre-optimized parameters (Chi et al. 2019).

NextFirst dispatching protocol. The NextFirst protocol
(Brooks et al. 2015), also known as DC-dispatch (Morris,
Muscettola, and Vidal 2001) or early execution (Lund et al.
2017), dynamically assigns a value to and dispatches each
time point (i.e. executes the PSTN) in O(n) linear time, by
starting activities as soon as possible. Let tj be a control-
lable time point in a PSTN, and Ij = {(0, j), . . . , (i, j)} the
set of incoming edges in tj . Therefore, tj is assigned a time
value as soon as all the preconditions are validated, that is,
all the t0, . . . , ti time points are known, leading to the very
simple online decision rule:

tj = max(t0+l0j , . . . , ti+lij). (1)

In the case tj > min(t0+u0j , . . . , ti+uij), the dynamic
execution is interrupted and considered as failed. Naturally,
NextFirst protocol has linear complexity O(n). Back to our
PSTN example in Fig. 1, the value of t11 is then dynami-
cally set to max(t10, t6) as soon as tasks Rover2:expe and
Rover1:relay are completed. Execution fails if t11 exceeds
t10 + 3. Eventually, we hope for t12 ≤ 20.

Formulation of the optimal dispatching problem
Assumptions and notations. We assume the operational
time horizon to be partitioned in h outcome and decision
stages. The random vector ξ = ξ1, . . . , ξh, with support Ω,
describe all the possible sequences of outcomes. When nec-
essary, we designate by ξt..t

′
the sequence of outcomes of

scenario ξ from time t to time t′. The decisions to be taken
by the online scheduler during the operations are represented
by a vector x = x1, . . . , xh of IRh, from which the schedule
can be trivially deduced. We refer to decisions xt, . . . , xt

′

as xt..t
′
. The indicator function V x(N, ξ) returns 1 iff the

schedule x is consistent in scenario ξ. Operator Eξt [ · ] des-
ignates the expectation over random variable ξt, condition-
ally to history ξ1..t−1. In case of endogenous uncertainty,
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Eξt [ · ] also depends on decisions x1..t−1. Finally, Xt rep-
resents the set of legal actions (i.e. time assignments) at time
t, which naturally depends on past actions x1..t−1 and his-
tory ξ1..t.

Multistage stochastic formulation. An optimal dispatch-
ing protocol necessary computes, in any possible situation
(i.e. given any possible past realizations and decisions), the
decisions that maximizes the probability that the current par-
tial schedule completes to a consistent schedule. The fol-
lowing multistage stochastic program determines the opti-
mal dispatching decisions xt at a current time t:

argmax
xt∈Xt

Eξt+1

[
max

xt+1∈Xt+1
Eξt+2

[
. . . max

xh−1∈Xh−1
Eξh

[
max
xh∈Xh

V x
1..h

(N, ξ)
]
. . .

]]
(2)

where the maximum value of the first expectation, when
t = 0, is by definition equal to the Degree of Dynamic Con-
trollability (DDC) of the network (Saint-Guillain et al. 2020,
2021), the probability of success under perfect reoptimiza-
tion. Consequently, this must be at least equal to the proba-
bility of success under the NextFirst protocol.

The nested expectations in (2) form a tree structure, well
known as the scenario tree. Unfolding the maximization op-
erators as well leads to a full decision-scenario tree as il-
lustrated in Fig. 2. Each path of the tree constitutes a pos-
sible scenario realization together with associated decisions,
a sequence ξt, xt, . . . , ξh, th. At time t, decisions xt depend
on the current history ξ1..t and maximize the expected value
Eξt+1 [maxxt+1 . . .] of the future decisions at time t+1 given
the remaining uncertainty, and so on until time h is reached.

A node ξt hence represents a particular state, defined by
history ξ1..t and past decisions x1..t−1. Counter-intuitively,
we call node ξt a decision node. This is because at this par-
ticular state, a decision xt must be chosen amongst Xt. Fol-
lowing (2), xt is necessarily the decision maximizing the
probability that the partial schedule x1..t extends to a con-
sistent full schedule.

A node xt represents a decision that has already been cho-
sen for time t. Since it directly leads to nodes representing
the possible realizations of ξt+1, we call xt a chance node.
Still following (2), the value of the decision xt is given by
the expected value of the subsequent (and consequent) real-
izations.

3 Monte Carlo Tree Search
Solving problem (2) is computationally intractable in prac-
tice. Yet, a look at the associated tree immediately sug-
gests two classical approximation schemes: (a) limiting the
branching factor and (b) avoiding to consider less relevant
subtrees. Both approaches are compatible, and with a few
additional techniques described in this section, we will end
up with an adaptation of the well-known Monte Carlo Tree
Search (MCTS) algorithm to our PSTNs.

Limiting the branching factor. This can be achieved by
sampling a restricted number of children generated from

Figure 2: Tree structure of the problem. The root node rep-
resents the current state (past decisions and realizations) at
time t. For simplicity, decision (resp. random) variables have
only two possible choices (resp. outcomes).

chance and/or decision nodes. At a decision node, a lim-
ited number of children xta, x

t
b, . . . could either be chosen

in Xt at random, or by following some predefined strategy
(a dispatching protocol!). At a time t chance node, a limited
sample of random realizations of ξt+1 may constitute a per-
tinent restricted set of children nodes. In particular, even if
MCTS aims at dealing with large branching factors, this step
is still mandatory to obtain a discrete tree from the decision
and realization domains, which are continuous by nature.

Subtrees prioritization. While a huge part of the whole
tree depicted in Fig. 2 is already pruned by the simple action
of restricting the branching factor, the resulting tree is likely
to remain too big to be entirely explored, and further de-
creasing the branching factor may result in missing critical
decisions or outcomes. This is where MTCS comes at hand.
In fact, MCTS selects the most promising nodes (i.e. sub-
trees) to consider first by using a node value function, which
exploits a Monte Carlo sampling paradigm to approximate
and eventually evaluate the interest in visiting a subtree.

General MCTS approach and related work
MCTS is a general framework, which has already been well
described by the literature. The reader interested in a com-
plete description may refer to Browne et al.’s survey (2012),
Section III. The general MCTS algorithm can be outlined as:

MCTS keeps iteratively performing each of the following
four steps in turn, until the computation budget is reached:
1) select an expandable (non final) node; 2) expand the node
by generating one (or more) of its child nodes; 3) simulate
one path down the current tree, in order to reach a final state
from the newly created child node, without creating any new
node, but instead obtain a final state as quickly as possible;
4) backpropagate the final state value R, updating the es-
timated value V (node) of each node along the path from
the new to the root node. Finally, the playing action repre-
sented by the best root child is returned once the computa-
tional budget is exhausted. An example of search tree being
gradually built using MCTS’s four steps is depicted in Fig-
ure 3. Some details of the tree may appear mysterious at
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Figure 3: MCTS tree and iteration steps.4 Decision node. # Chance node. � Terminal node.

Algorithm 1: General MCTS.
1 root← CreateRootNode();
2 while computation budget not exhausted do
3 node← root;
4 while not node.IsExpandable() do
5 node← node.SelectChild();
6 child← node.ExpandOne();
7 if child.IsTerminal() then
8 child.BackPropagate(child.Evaluate());
9 else

10 for i← 1 to nsim do
11 child.BackPropagate(child.Simulate());
12 return root.BestChild();

this time, and will be clarified as we describe how we adapt
MCTS specifically for taking decisions in PSTNs.

How to select which node to expand, and therefore where
to grow the tree, is at the heart of MCTS and raises the ques-
tion of intensification versus diversification. Whereas a se-
lection policy based on intensification only is likely to end
up exploring a very narrow, specific, deep subtree, the op-
posite pure diversification would result in simple breadth-
first search. The most popular selection policy, called Upper
Confidence Bounds for Trees (UCT), makes its path from
the root node down to a leaf node to be expanded (i.e. not a
final game state) by diving through child nodes (lines 3-5 of
Algorithm 1), where node.SelectChild() maximizes

UCT = V (child) + 2C

√
2 lnnnode

nchild

where the first term V (child) is the estimated value of the
child node and therefore encourages intensification. The sec-
ond term, with nnode being the number of times a node or

one of its descendants ran a simulation, encourages diversi-
fication by promoting children being less visited than their
sibling nodes. In fact, a never visited child will be given∞
value. The C parameter is usually empirically tuned to best
calibrate both terms. root.BestChild() classically returns the
root child maximizing either V (child) or nchild. Remark that
whereas V x

1..h

(N, ξ) in Eq. (2) indicates whether a leaf
node of the decision/outcome tree is a win or a loss state,
here V (node) approximate the expected success value of a
terminal node belonging to the subtree defined by node.

MCTS with continuous action and outcome spaces.
The classical MCTS method has been developed for de-
terministic zero-sum games. Like stochastic games that in-
volve rolling a dice, our PSTNs involve uncertainty as the
contingent duration of some activity remains unknown un-
til one actually tries to execute it. Naturally, MCTS have
been adapted to deal with dice rolls, and variants have
been proposed (Browne et al. 2012; Cowling, Powley, and
Whitehouse 2012). However, most studies focus on par-
tially observable states, such as hidden cards in Poker, rather
than uncertainty. As PSTNs usually involve a continuous
time dimension, both realization outcomes and action de-
cisions must generally be chosen out of continuous do-
mains. Different methods have already been proposed in or-
der to obtain a discrete search space compatible with MCTS,
namely to implement functions node.isExpandable() and
node.ExpandOne(). Amongst the proposed approaches,
many are based on sampling a limited set of actions and/or
outcomes (Kearns, Mansour, and Ng 2002), that progres-
sively grows as the associated node is being visited (Chaslot
et al. 2008; Couëtoux et al. 2011), a technique called pro-
gressive widening. In fact, Lila exploits the progressive
widening technique. Back to the node.SelectChild() func-
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tion, Yee, Lisỳ, and Bowling (2016) proposed KR-UCT, an
alternative to UCT based on kernel regression, to better se-
lect and further share information between actions sampled
from continuous domains. They apply KR-UCT on the re-
markable problem of autonomous agents playing curling.

Dispatching a PSTN: a single-player game against
Nature
In a sense, our approach suggests to model our PSTN as
a single-player game against Nature. At a given state, the
player’s actions aim at choosing whether, for each of the
time events that are ready for execution, to schedule them
immediately or postpone. Depending on the player’s deci-
sions, dice rolls will then be used to represent the possible
random completion times of each started activity. Ideally, the
search tree being iteratively built by the MCTS algorithm
should directly approximate the full decision-scenario tree
depicted in Fig. 2. In practice however, depending on the
live decisions and outcomes, most of the time units in t..h
involve no decision nor outcome.

An equivalent, event-driven tree can be obtained by sim-
ply skipping all “empty” time units. Furthermore, this ap-
proach permits to get rid of discrete time units and to han-
dle a continuous time horizon. The MCTS tree depicted in
Fig. 3 gives an example of such construction, for our rover
PSTN example of Fig. 1. Here, the execution has not yet
started (i.e. current real time is zero) and MCTS is used to
approximate the full decision-scenario tree of our PSTN, be-
ginning with the decisions of when to schedule events t0 and
t7. Recall that decision nodes (4) stand for a state where the
upcoming action is a decision, and chance nodes (#) states
involve a pending random outcome.

A path of our MCTS tree does not simply alternate de-
cision and chance nodes. In fact, the nature of the node,
and even the action being played, depends on the history
(path) rather than its depth. For instance, the node t3 = 4.6
at the bottom left is a chance node (#), whereas its sibling
t3 = 7.2 is a decision node (4). This is because in both
cases the history is t1 = 1.8, t7 = 0, t8 = 5.3, t2 = 4.6.
If t3 is to be scheduled directly after t2 at time 4.6, then the
upcoming event is the random outcome t4, since t8 is only
at 5.3. If on the contrary t3 is delayed to 7.2, then the next
event concerns the action of deciding for t9.

Proposed PSTN-specific MCTS instantiation
We now describe how we currently propose to instantiate Al-
gorithm 1 in order to obtain a PSTN (online), asymptotically
optimal, dispatching algorithm.

node.IsExpandable() When executing a PSTN, both deci-
sions and outcomes must be selected from (continuous) infi-
nite domains. Similarly to Kearns, Mansour, and Ng (2002),
we experiment a fixed-size branching factor at both chance
and decision nodes. Therefore, the function returns true iff
the predefined size is not yet reached. We also consider
a more elaborated strategy, designing node.IsExpandable()
such that the branching factor of a node progressively in-
creases (Chaslot et al. 2008; Couëtoux et al. 2011), hence

allowing the asymptotic completeness of the algorithm, that
is, the optimally robust decisions at defined by Eq. (2). The
branching factor of each node then depends on how many
times it has been visited, and follows βnα, with n = nnode.

node.ExpandOne() At a chance node, a child is created
simply by sampling the associated random variable follow-
ing its own probability distribution. At a decision node, dif-
ferent approaches may be considered when selecting an ex-
ecution time. In order to eventually converge to a complete
search tree, any relevant execution time should be possibly
chosen. In this paper, the first generated child is executed
as soon as possible according to the PSTN lower bounding
time constraints, without any delay. Any other child gets as-
signed an execution times randomly sampled, with a proba-
bility that decreases with the delay. This is achieved by tak-
ing the absolutes values from a normal distribution centred
at delay 0.

Note that if the decision nodes are limited to have only
one child, then the MTCS tree will naturally converge to
represent the behavior of the PSTN under the NextFirst dis-
patching protocol, which consists in executing each time
point as soon as possible. In theory, the node.ExpandOne()
can therefore be implemented in order to represent any com-
putable dispatching protocol in MCTS. However, in order to
get completeness, any admissible execution delay should be
eventually considered.

node.isTerminal() A node is terminal as soon as either all
the time points of the PSTN (either associate to chance or
decision nodes) have been attributed a value, or if the value
of some time point is not consistent with the PSTN tem-
poral constraints. In practice, an inconsistency may be de-
tected earlier, by comparing the current time assignments
with the remaining possible future decisions and outcomes,
therefore allowing to avoid further exploring a subtree which
can be proven to be inconsistent. For that we refer to estab-
lished theoretical results on PSTN controllability checking,
and leave the related improvements for future work.

node.Simulate() The classical MCTS approach for sim-
ulating the remaining decisions and outcomes would con-
sist in sampling everything at random, until a final state is
reached. In the specific context of PSTNs however, it has
been observed that executing time points as soon as possible
provides good results in general (Saint-Guillain et al. 2020).
Therefore, our approach is to follow the NextFirst dispatch-
ing protocol during simulations.

node.BackPropagate() Once the simulation hits a termi-
nal state, its success value (0 or 1) must be backpropagated
from the child node that initiated the simulation, up to the
root node, thereby updating the estimated values of all the
nodes along that path. The “expectiminimax” rule (Melkó
and Nagy 2007) is applied, yet adapted to a single player
stochastic game: if the node n is terminal, then its value
V (n) is equal to the success value; if it is a decision node,
then its value is updated to V (n) = maxc∈Children V (c); if
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it is a chance node, then V (n) = 1
|Children|

∑
c∈Children V (c).

Remark that this rule eventually converges to the optimal
decision/outcome tree formulated in Equation (2).

root.BestChild() At a current time t, the root node is usu-
ally a decision node. Once the computational budget is
reached, we are interested in the best possible decisions, be-
low the root node. As shown in Fig. 3 however, a path of our
MCTS tree does not simply alternate decision and chance
nodes. If, as for the PSTN of Fig. 1 and the associated MCTS
tree of Fig. 3, two decisions (t1 and t7) follow the root node,
then the best two decisions must be returned. In our exam-
ple, BestChild() is called at root node to select the best direct
child for t1, and then is called in turn on that child to select
the best subsequent decision for t7. Amongst the possible
choices, we simply select the child maximizing V (n).

4 The Versatility of the Simulation Paradigm
A basic Monte Carlo simulation could not converge to op-
timal decisions, because any simulation requires to follow
a predefined, often simplistic, execution strategy (dispatch-
ing protocol) such as NextFirst — otherwise each simula-
tion amounts at solving the NP-hard multistage optimization
problem, which the simulation aims at approximating! In
other words, running a Monte Carlo simulation forever sim-
ply converges to the expected value of the predefined strat-
egy. On the contrary, Monte Carlo Tree Search combines
Monte Carlo simulation with the construction of a complete,
optimal, decision tree, which ultimately (i.e. asymptotically)
converges to the true optimal decisions. Thanks to the simu-
lation side, MCTS allows to simply handle very complicated
concepts, some of them being described in this section, such
as dependent random variables or even endogenous uncer-
tainty (which is a topic rarely covered in the literature).

Maximizing the Expected Utility: dealing with
Cutoffs and Precondition chains
A classical PSTN assumption is that the PSTN execution
fails as soon as an activity is failed at being executed within
the time constraints. In Saint-Guillain et al. (2020), we pro-
posed PSTNs alternative execution assumptions, in which
activities can be safely interrupted, using a predefined deter-
ministic cutoff time or duration, hence allowing the execu-
tion to continue. In our rover example, this could be true for
any experimental activity which are somewhat isolated.

Nonetheless, interrupting an activity may however turn
impossible to carry out a related subset of remaining ones,
such as for example, an experiment composed of several
tasks. In our example of Fig. 1, interrupting a driving ac-
tivity would necessarily compromise the associated exper-
iment, although it does not prevent from further relaying.
In other words, the driving activity is a precondition for the
subsequent experiment. In practice, precondition chains may
span over multiple subsequent activities: if a task C depends
on successful execution of B, which in turn depends on a
task A, then interrupting A would prevent from executing
both B and C.

Yet, all activities do not necessarily have the same pri-
ority, and some may even be considered mandatory (unin-
terruptible), such as the relay activities in our example. A
utility value can therefore be assigned to interruptible ac-
tivities, leading to the objective of maximizing the overall
expected utility of the network, that is, the expected sum of
the task utilities that can be successfully dispatched, whereas
failing at dispatching a mandatory activity results in a zero
utility. More generally, mandatory tasks may be assigned a
very high utility value w.r.t. interruptible ones.

MCTS with Utility, Cutoffs and Preconditions. Our
PSTN specific instantiation of the MCTS framework is able
to deal with these new concepts with a few straightforward
adaptations. The node.IsTerminal() and node.ExpandOne()
functions are impacted. A node is then terminal when ei-
ther an inconsistency is detected (or if it reached its prede-
fined cutoff), or when all time points have been attributed
a value. At deciding for the execution time of a task in
node.ExpandOne() function, the resulting time then never
exceeds the predefined cutoff. Furthermore, depending on
the history, the task at stake will not be executed (i.e. as-
signed duration zero) if some of its preconditions is not met,
such as a past required activity that has been interrupted by
hitting its cutoff (or not executed for similar reasons). Fi-
nally, the computation of V (n) at a terminal node is not zero
or one anymore, but the sum (over the MCTS tree path) of
the utilities of the tasks that did not hit their cutoff time,
or zero if some mandatory task did. The resulting V (n)
is then backpropagated the exact same way as aforemen-
tioned. Eventually and following Eq. (2), the average value
at V (root) will necessarily converge to the expected total
PSTN utility.

Dealing with resources and exotic probabilities. Other
PSTN extensions, such as resource usage, can be handled
by adapting the node.ExpandOne() function, assuming that
node.Simulate() uses the same mechanism to sample deci-
sions and outcomes. One just need to save the current re-
source usage state, such as energy consumption, at each
node of the MCTS tree and deduce, at the current deci-
sion node, the possible children accordingly. When it comes
to chance nodes, because the children are simply randomly
sampled from each random variable distribution, any pos-
sible distribution may be considered. In fact, considering
the current history of decisions and outcomes at a cer-
tain chance node, dealing with dependent random variables
(i.e. possible outcomes being influenced by past realiza-
tions), as well as endogenous uncertainty (i.e. influenced by
past decisions) becomes just a matter of implementing the
node.ExpandOne() function.

5 Experimental analysis and validations
The rover PSTN example of Fig. 1 constitutes an interest-
ing benchmark for analyzing the behavior of the proposed
framework. Since computing the probability of success of
the optimal decisions (i.e. the Degree of Dynamic Controlla-
bility as defined in Saint-Guillain et al., 2020) is intractable,
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Figure 4: Evolution of the V (root) estimated root node value, which predicts the robustness of the network under NextFirst,
since decision nodes are limited to one child, for PSTN example of Fig. 1. A basic Monte Carlo simulation, in red, converges
to the true robustness value.

there is the need for approximation methods such as the one
proposed here. In this case, we must rely on other indicators
to empirically validate our method. We then first consider
the robustness of the PSTN under the NextFirst dispatching
protocol, which can be either computed exactly, or approx-
imated with an arbitrary precision using Sample Average
Approximation (SAA), namely pure Monte Carlo simula-
tion. Thereafter, more elaborated dispatching decisions will
be considered by allowing Lila to try postponing the begin-
ning of PSTN activities, leading to an approximation of the
true probability of success under perfect reoptimization.

Implementing NextFirst dispatching protocol. Given
some parametrization that restricts Lila’s decisions to fol-
low NextFirst protocol, the value of V (root) node should
converge to the robustness under NextFirst. We hence limit
the number of decision node children to one, while vary-
ing the number of chance node children. As explained with
node.ExpandOne() function, the resulting MCTS tree should
then approximate the behavior of the PSTN under NextFirst.

Figure 4 shows how our V (root) estimated root node
value converges compared to the the success rate measured
by SAA (Monte Carlo), as the number of iterations (i.e.
nodes for MCTS) increases for the PSTN depicted in Fig.
1. A well-known issue of MCTS, when limiting the num-
ber of chance node children (or also decision nodes in gen-
eral), is that the first nodes (in terms of depth) of the tree
impose a strong bias. A a consequence, the entire tree and
therefore the estimated probability of success as V (root)
strongly depend on the sampled durations of t2 and t8. In
fact, the plot shows two different runs of Lila, given 100
children (MCTS 100) at each chance node, for which each
run converge to a somehow inaccurate approximation of the

NextFirst robustness (which is of ≈11.35%). The approxi-
mation improves as the number of chance children increases
to 1000, yet the strong bias is still visible in the plot. Finally,
allowing an infinite number of chance children eventually
correctly converges. Note that in this case, MCTS nodes at
depth 4 are never visited, as the algorithm keeps always ex-
panding at the same chance node for t2. The progressive
widening (MCTS PW) technique, which gradually grows
the maximum number of children, have been here tested on
chance nodes. Given adequate parameters, empirically set to
β = 0.3 and α = 0.4 in this experiment, Lila eventually
converges accurately. These 700000+ iterations require ap-
proximately 10 seconds, on an Intel Core i7 2.3GHz, 16GB
3733MHz, CLang 12.0.

Approximating optimal dispatching. We now allow the
number of children at decision nodes to grow as well, by
using the progressive widening technique. This eventually
enables MCTS to explore more elaborated decisions than
just simply dispatch everything as soon as possible. Figure
5 shows how delaying the execution of rover driving activi-
ties, represented by time points t1 and t7, improves the esti-
mated probability of success. Eventually, six different five-
minute runs of Lila all converge to ∼48.5% chances of suc-
cess, where t1 should best be delayed to time 1∼3 and t7 to
time 3∼4, depending on the run.

Recall that under NextFirst dispatching protocol, the suc-
cess probability was of ≈ 11.35% only. We clearly observe
here that NextFirst produces significantly suboptimal dis-
patching decisions (by starting each activity as soon as pos-
sible), in the specific case of the PSTN at stake, which is the
one depicted in Fig. 1.
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Figure 5: Top: Evolution of the V (root) estimated root node value, when using progressive widening on both decision and
chance nodes, for several independent runs of Lila. Bottom: Evolution of the best decisions as returned by the root.BestChild()
function, for both t1 and t7, during one run of five minutes.

6 Conclusions and Future Work

We show how versatile the MCTS framework can be, when
specialized to PSTN dispatching. It has the unlimited flexi-
bility offered by the simulation paradigm. It is conjectured to
asymptotically converges to optimal decisions (the demon-
stration is left for future work). In theory, it handles any
possible continuous or discrete, even non-parametric, prob-
ability distributions, as well as inter-dependencies between
random variables, exogenous as well as endogenous uncer-
tainty. We conduct an preliminary experimental analysis,
validating our algorithm, called Lila, on a simple PSTN ex-
ample. Finally, we show how our easily algorithm may be
adapted to deal with activity cutoff times and precondition
chains (important in certain applications such as planetary
rovers), hence providing a first solution framework to the
problem of maximizing PSTN expected utility.

Future research directions.

Also related to the fact that our MCTS must deal with
continuous domains, a node.SelectChild() function inspired
from the theoretical results of Yee, Lisỳ, and Bowling 2016
may also be more appropriate than classical UCT. Finally,
the literature already counts a number of improvements and
extensions to classical MCTS (Browne et al. 2012), many of
them being worth experimenting in the particular context of
PSTN dispatching game. In addition to the aforementioned
points, the PSTN extensions should be considered as well.
In particular, accounting for activity resource usage, such
as energy consumption, is of great interest in the context of
Mars 2020 and future planetary rovers. In what follows we
elaborate on additional promising directions.

Offline problem: DDC approximation. The experimen-
tal analysis conducted in this preliminary research is focused
on only one PSTN instance, namely that of Fig. 1, allow-
ing interesting insights on the algorithm behavior. A more
comprehensive experimental study should be conducted on
well known PSTN benchmarks, such as those recently con-
sidered for the a priori problem of approximating a PSTN
robustness, or degree of dynamic controllability (DDC).

Online dispatching. This preliminary research includes
an experimental analysis which considers the problem of
evaluating the a priori PSTN robustness, but does not yet
include online dispatching. A direct extension of this work
is therefore to integrate Lila in an online dispatching sim-
ulator, in order to test its online reoptimization capabilities
on well-known PSTN benchmarks. Since our algorithm is
based on the MCTS framework which aims at dealing with
fundamentally online problems, this should come with very
little updates.

Proof of Concept: Mars 2020 planetary rover. How to
define adequate cutoffs for M2020 task networks currently
constitutes a real issue. We will i) evaluate the use of Lila
to approximate the true DDC and expected utility of M2020
task networks, while considering cutoffs and precondition
chains, and ii) will further try adapt the predefined cutoff
times of some or all activities as part of the decisions, in or-
der to maximize the success probability or the expected util-
ity of the PSTNs. The latter (ii) is however a very hard prob-
lem. We will also consider iii) PSTN with resources (e.g. en-
ergy consumption) in addition to cutoffs and preconditions
chains.
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Abstract

Plan execution in unknown environments poses a number of
challenges: uncertainty in domain modeling, stochasticity at
execution time, and the presence of exogenous events. These
challenges motivate an integrated approach to planning and
execution that is able to respond intelligently to variation.
We examine this problem in the context of the Europa Lan-
der mission concept, and propose a planning and execution
framework that responds to feedback and task failure using
two techniques: flexible execution and replanning with plan
optimization. We develop a theoretical framework to predict
the value of each of these techniques, and we compare these
predictions to empirical results generated in simulation. We
demonstrate that an integrated approach to planning and exe-
cution that is grounded in flexible execution, replanning, and
utility maximization will be an enabling technology for future
tightly-constrained planetary surface missions.

Introduction
When integrating AI planning into robotic applications,
planners are consistently challenged by variation in execu-
tion and uncertainty in the quality of our environment mod-
els. In space-based applications, this is especially challeng-
ing because the environment is largely unknown, reducing
the quality of our a priori models of the world. To address
these problems, we describe an integrated approach to plan-
ning and execution in an unknown, unpredictable environ-
ment. First, we define a theoretical framework to examine
the value of two integrated planning and execution tech-
niques: flexible execution and replanning with plan opti-
mization. We discuss this framework in the context of the
Europa Lander mission concept. Finally, we compare the
predictions of the model to empirical results in a Europa-
like simulation environment.

The primary empirical context of our model is a mission
concept to perform in situ analysis of samples from the sur-
face of the Jovian moon Europa (Hand 2017). Unlike prior
NASA missions, a priori domain knowledge is severely lim-
ited and uncertain, and communication with Earth is limited
by long blackout periods (about 42 hours out of every 84
hours). Consequently, a successful mission requires a plan-

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ning and execution framework that is highly efficient1 , ro-
bust to unprecedented levels of uncertainty, and still capa-
ble of maximizing its overall utility. On the other hand, the
Europa Lander concept has a fairly rigid definition of what
actions the lander must perform in order to produce util-
ity. Our planning algorithm leverages this domain-specific
knowledge by making use of a hierarchical task network
(HTN) and using heuristic-guided search to examine various
task combinations to maximize utility. The ultimate goal for
a Europa Lander would be to analyze surface material and
communicate the resulting data products back to Earth. To
reward accomplishment of these goals, we assign utility to
tasks such as sample excavation and seismographic data col-
lection, but do not receive this utility until the lander com-
municates the data down to Earth. In the HTN framework,
this means that tasks in a hierarchy produce utility only if
the full hierarchy is executed.

For our empirical evaluation, we base our planning system
on MEXEC, an integrated planner and executive first built
for NASA’s Europa Clipper mission (Verma et al. 2017). We
compare four approaches to planning on the Europa Lan-
der problem similar to those used in prior missions: a static
plan without failure recovery mechanisms, a static plan with
ground input for failure recovery (Gaines et al. 2016), flex-
ible execution without replanning, and flexible execution
with replanning (Rabideau and Benowitz 2017). We explore
the value of flexible execution and replanning with plan op-
timization, and examine these techniques’ effects on utility
in these scenarios. We demonstrate that, true to our model’s
prediction, each technique shows significant improvement in
utility achievement in the Europa Lander domain.

Domain Description
The primary goal of the Europa Lander mission concept is
to excavate and sample the surface, analyze the sampled
material for signs of biosignatures, and communicate that

1As a point of reference, the RAD750 processor used by the
Mars 2020 rover has measured performance in the 200-300 MIPS
range. In comparison, a 2016 Intel Core i7 measured over 300,000
MIPS, or over 1000 times faster. Furthermore, the Mars 2020 on-
board scheduler (Agrawal et al. 2019) is only allocated a portion of
the computing cycles onboard the RAD750 resulting computation
several thousand times slower than a typical laptop.
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Figure 1: A task network for the Europa Lander mission concept. The diagram represents a potential execution trace of the
mission that would fulfill baseline requirements.

data back to Earth (Hand 2017). Additionally, there are sec-
ondary objectives to take panoramic imagery of the Europan
surface and collect seismographic data. Lander operations
are generally limited to the accomplishment of these two
overarching goals. This provides significant structure to the
problem, since the concept mission clearly defines the se-
quence of actions required to achieve these goals. Figure 1
displays the strong dependency structure inherent to the Eu-
ropa Lander concept mission. In order to sample, the lander
needs to have excavated a trench; in order to analyze, the
lander needs to have collected a sample; etc.

As a minimum requirement, the lander should excavate
a trench in the Europan surface, collect three samples from
that site, analyze those samples, and return that data to Earth.
The basic requirements of a mission would require only a
single site to be excavated. However, there is value in exca-
vating additional sites, because the material at different sites
may possess different properties. On the other hand, the lan-
der may choose to resample the same location, for exam-
ple, in order to verify the discovery of a biosignature. In the
baseline mission concept, all three of the lander’s samples
are chosen from the same target. Note that after the first site
is excavated, no further excavations are needed to sample
from that trench; all three sampling activities can share a sin-
gle excavation site. After excavation and sample collection,
samples must be transferred into scientific instruments that
analyze the material and produce data products. Then, for
a mission to achieve any actual utility, those data products
must be communicated back to Earth.

In addition to sampling tasks, the lander may engage
in seismographic data collection and period panoramic im-
agery tasks. These are considered lesser goals, with lower
utility associated with their completion. As such, the data
products that these tasks generate are considered to have

lower value. However, these tasks also involve no surface
interaction, and have less uncertainty associated with them
as a result.

It is important to note that utility is only achieved when
data is downlinked back to Earth. This is true for both the
sampling and seismograph/panorama tasks. Some excava-
tion sites or sampling targets may provide more utility than
others if, for example, one of those targets has a positive
biosignature and the other does not. However, regardless of
the quality of the material that the lander samples, no util-
ity is achieved unless that data is communicated. This dy-
namic means that while potential utility is generated during
the sampling and analysis phases, it is only realized by com-
pleting relevant communication tasks.

The Europa Lander mission concept is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy as
efficiently as possible. Each task saps energy from the bat-
tery, and our algorithm must plan accordingly to maximize
utility in face of this constraint. In addition to this challenge,
the surface characteristics of Europa are uncertain, and any
prior mission model that is generated before landing is sure
to have inaccuracies. In particular, the energy consumption
of the excavation and sample collection tasks is largely un-
known. There is also significant variation in the utility of
any given sample, since the value of sampling a given target
on Europa depends on whether the material is scientifically
interesting, e.g. whether a biosignature is present.

Approach
We design our planning system to respond intelligently to
stochasticity at execution time, since we expect this to be a
significant factor in our domain. Planning and execution are
integrated in our approach, in order to respond to variation
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and therefore better optimize overall utility achieved. We
achieve this integration through the use of two techniques:
flexible execution and replanning with plan optimization.

Flexible Execution
Flexible execution is a lightweight rescheduling algorithm
that runs at a much higher cadence than the planner. This
algorithm has two main properties: (1) it is significantly less
costly than replanning, and (2) it is significantly less power-
ful than replanning. Despite its limited scope, flexible exe-
cution is valuable because it can be run so frequently. This
allows the system to handle less-severe unexpected events
without incurring the cost of replanning. Previous NASA
missions have made heavy use of flexible execution, such
as the Mars 2020 Perseverance rover (Chi et al. 2018). Our
implementation differs in focus, emphasizing responses to
adverse events.

In our system, flexible execution consists of two major
components. The first is task push. If a task’s preconditions
are not met, before failing the task, we allow it to wait for
some amount of time for this inconsistency to resolve. Such
a situation might occur, for example, if previous dependen-
cies are unexpectedly delayed. We then push the start time
of the task forward in the plan. Task push is implemented
as a callback that is run before a task is dispatched to the
execution system. The executive checks the task’s precon-
ditions and delays dispatch until either the conditions have
been met, or the task’s wait timeout has been exceeded.

The second component of flexible execution is automated
retry. After a task completes with a failure code, flexible ex-
ecution can immediately re-schedule the task if its precondi-
tions are still met. The plan is then updated to account for the
new predicted end time of the task, as well as its additional
resource usage. Here, the system short-circuits a simple fail-
ure response, avoiding planning costs for failures whenever
possible.

In the context of the Europa Lander domain, flexible exe-
cution offers significant value despite its simplicity. Because
significant noise is expected in resource impacts, providing
a low-cost method of handling mismatches in resource use
predictions often avoids costs associated with either replan-
ning or waiting for ground input. For example, if heating a
joint on the lander is slower than predicted, flexible execu-
tion may handle this by re-triggering the heating operation
or delaying arm movement, either of which would be suffi-
cient to resolve the issue.

Replanning with Plan Optimization
For more complex failure responses, simple retries may be
insufficient. In these cases, we turn to replanning during ex-
ecution. Replanning allows the system to make use of on-
line state updates, responding to variation from the origi-
nal plan’s predictions. Our framework measures the value
of each resource being modeled, and assigns that value to
the given resource in the planning model. Then, when re-
planning, the planner uses the actual, measured value of the
state, rather than the previous predicted value. This allows
the system to update its goals according to what is realisti-
cally possible given the current state measurements of the

system. When tasks fail, their predicted state impacts are
usually not realized. Replanning provides a mechanism to
respond to these problems in a more complex manner than
retrying the task. For example, excavation of the Europan
surface is a complicated task with many modes of failure.
Retries or delays may be insufficient responses to these fail-
ure modes, which may require additional actions to be taken.

In addition to this, replanning allows the system to make
use of additional knowledge gained at execution time. This
may take the form of task model updates and utility ad-
justments. For example, during execution time, the lander
may discover that a task consumes more energy than ex-
pected, or that it produces more valuable data than expected.
In the Europa Lander domain, the system might discover a
biosignature at a sampling location, which would drastically
change the site’s utility. This is where plan optimization
comes into play. By updating the task models, replanning
can take execution-time knowledge into account and gen-
erate plans that produce more utility. Replanning thus im-
proves overall utility achievement through two mechanisms:
more advanced failure recovery, and plan optimization given
execution-time knowledge.

Theoretical Framework
We define our planning problem as follows. We provide our
planner with a set of tasks T = {t0, t1, ..., tn}. Each task is
represented by a tuple tk = {ck, uk, dk, P, I} where:

• ck represents the task’s cost.
• uk represents the task’s utility.
• dk represents the task’s nominal duration.
• P is the set of the task’s preconditions. These may be

based on resource values, or on the execution state of de-
pendency tasks.

• I is the set of its impacts on resource timelines.

This matches the timeline representation of execution state
used by (Verma et al. 2017). For our problem, we assume
that we have a fixed cost budget b. In the Europa Lander
domain, this budget represents the non-rechargeable battery,
with each task using up some amount of that battery’s en-
ergy. We wish to maximize utility by scheduling tasks sub-
ject to the following constraints:
• For all tasks, all preconditions are valid.
• For all tasks, all impacts are valid.
• The sum of all task costs does not exceed b.
In our framework, we examine four planning and execution
strategies: static, ground, FE, and replan. Using the static
strategy, a plan is generated before execution time, then ex-
ecuted without change. No failure responses are enabled,
so any task failure results in the termination of plan exe-
cution. In the ground strategy, we introduce a mechanism
for failure resolution: waiting for ground input. We assume
that ground input is able to resolve all failures. The plan is
still pre-generated, but task failures can be handled without
termination of execution, albeit in a costly manner. In the
FE strategy, we allow flexible execution of our plans, which
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provides another failure resolution mechanism. Flexible ex-
ecution is less costly, but is able to handle only a fraction of
possible failures, with all other failures handled by waiting
for ground input. Finally, in the replan strategy, we allow for
modification of the plan at execution time according to in-
formation discovered while running. This provides another
failure resolution mechanism that we assume is more power-
ful the FE, but less powerful than ground input. In addition,
replanning allows for the optimization of plans during ex-
ecution time according to newly discovered utility. Replan-
ning can therefore serve dual purposes: resolving task fail-
ures, and changing the plan to increase overall utility gain.

Given this context, we predict the overall utility achieve-
ment of a plan using an estimate of utility per unit cost uavg.
Then, assuming that tasks always succeed, our expected util-
ity for a plan would be buavg . To factor in task failure, we
assume that tasks fail with some probability P (fail), and we
assume that task failures follow a Poisson distribution. The
first planning/execution strategy that we analyze is the static
strategy. Here, since the strategy terminates execution on
failure, the system’s expected utility achievement is based
on how long it can be expected to execute. Then, the ex-
pected utility achievement of this strategy is given by:

U(Ss) = uavg ·min

(
b,

cavg
P (fail)

)
(1)

Here, cavg denotes the average cost of each task.
In the ground strategy, we include a rudimentary error re-

sponse of “going to ground” to seek manual intervention.
To model this in our framework, we assume that such “wait
for input” responses each incur a cost cw, and always allow
plan execution to continue. Then, if our plan has np tasks,
the utility achievement of this “ground” strategy is:

U(Sg) = uavg (b− P (fail)npcw) (2)

In the FE strategy, we introduce flexible execution and
assume that some subset of task failures can be resolved with
this feature. We denote the probability of a task failing in this
way as P (FE). Note that P (FE) < P (fail), since failures
that are resolvable by flexible execution are a subset of all
task failures in general. We assume that flexible execution
has a negligible cost. Then, the utility achievement of plan
execution using this strategy is:

U(Sf ) = uavg (b− (P (fail)− P (FE))npcw) (3)

Finally, we consider the replan strategy, which incorpo-
rates flexible execution and replanning with plan optimiza-
tion. Unlike flexible execution, replanning incurs some non-
negligible cost cr. We assume that, like flexible execution,
replanning is able to resolve some subset of task failures.
We denote the probability that a given task fails in a way that
can be resolved via replanning, but not flexible execution, as
P (replan). Finally, we assume that all failure modes can be
resolved via waiting for ground input. Then, if we denote the
probability that a failure is resolvable only by ground input
as P (wait):

P (fail) = P (wait) + P (replan) + P (FE) (4)

Figure 2: Two possible decompositions of a single parent
“Sample Site 1”. In the left decomposition, the lander ex-
cavates the site, samples target A, and communicates raw
data. In the right decomposition, the lander skips excava-
tion, samples site B, and communicates compressed data.
Both achieve the same goal of sampling site 1.

Failures are resolved by the least costly resolution mecha-
nism. Thus, when a task fails, our system attempts to resolve
it by flexible execution, if possible, falling back to replan-
ning and ground intervention in sequence. To model plan
optimization, we provide our planning system with opportu-
nities to discover utility at certain points during execution.
We denote the number of such opportunities as d, and the
expected additional utility discovered as ud. Then,

U(Sr) =dud + uavg

(b− np(P (wait)cw − P (replan)cr))
(5)

Planning Approach
Problem Model
We model this problem using a hierarchical task network
(HTN) to compile the domain-specific knowledge of the de-
pendency structure into the task network. HTNs have been
used successfully in industrial and other real-world applica-
tions to improve the tractability of planning problems in sys-
tems such as SHOP2 (Nau et al. 2003) and SHOP3 (Gold-
man and Kuter 2019). In an HTN, hierarchical tasks are de-
composed to a set of subtasks. We refer to the higher-level
tasks as “parent tasks”, and refer to their children as “sub-
tasks”. Parent tasks may decompose into a number of differ-
ent sets of subtasks; we refer to each of these sets as a po-
tential “decomposition” of that parent task. Finally, we refer
to tasks with no decompositions as “primitive tasks”. These
primitive tasks represent tasks that the lander can be directly
commanded to perform.

Decompositions provide a number of benefits to our plan-
ning approach, significantly reducing plan search space. In
addition, we can treat all subtasks of a parent task as a sin-
gular block for planning purposes. The lander only achieves
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utility after completing an entire sequence of sample, ana-
lyze, communicate. Decompositions allow us to treat “sam-
ple, analyze, communicate” as a single unit and schedule
them accordingly. Thus, our model intrinsically biases the
lander against planning to sample without a corresponding
communication task. This may not always be optimal, if for
example, excavation and sampling is cheap and communica-
tion is very expensive. However, for our problem, energy use
is dominated by the excavation and sampling tasks, and the
decomposition paradigm effectively encodes this domain-
specific knowledge into our planning routine.

There are three main parent task types in our mission
model. The first is a Preamble, which consists of post-
landing initialization and other one-time initialization tasks.
Second are sampling tasks. These consist of excavation,
sample collection, transfer, analysis, and communication
tasks. Excavation can take place at one of two excavation
sites, and may be skipped if an excavation has previously
occurred for the specified site. For collection tasks, the lan-
der may choose between four collection targets: two for each
excavation site. It may revisit a target that has already been
sampled, still obtaining utility for a repeat sample. Then,
for communication tasks, the lander may choose to either
communicate raw data or compressed data. Finally, there
are Seismograph/Panorama tasks, which consist of seismo-
graphic data collection, panoramic image collection, and
communication of that data.

In our problem, we assign utility primarily to two activi-
ties: sampling and communication. Both of these task mod-
els are assigned a numeric value representing their utility,
which can be updated online by the planning and execution
system if knowledge at execution time alters the expected
utility of a given action. Utility for these tasks is achieved
only after their full decomposition has been successfully ex-
ecuted. Thus, for sampling utility to be achieved, a corre-
sponding communication step must successfully complete.

We assign utility to sampling tasks in order to differenti-
ate between sites that may be more or less interesting, de-
pending on the scientific value of the site. Communication
utility is larger, and remains constant. For the communica-
tion tasks, we assign higher utility and cost to tasks that
communicate raw data, compared to those that communicate
compressed data. This simulates a Pareto optimal “menu”
of communication options. The combination of sampling
and communication utilities represents the overall utility
of a parent sampling task. Seismograph/panorama utility is
driven solely by communication utility.

Planning Algorithm
Our planning algorithm uses the HTN model of the Europa
Lander problem to build a search graph, with nodes hold-
ing partial plans and edges holding task decompositions.
We perform a heuristic-guided branch and bound search on
this graph and select the best plan explored. The algorithm
consists of four phases: pre-processing, initialization, explo-
ration, and plan selection.

First, a pre-processing step flattens task decompositions
into a single layer, such that parent tasks decompose into
a chain consisting only of primitive, non-hierarchical sub-

Algorithm 1: Europa Lander Planning
Input: A list of tasks to schedule T
Output: A plan of scheduled tasks P
/* initialize exploration queue */
node collection = [];
add (plan=[], utility=0, cost=0) to node collection;
edge collection = [];
for d in task.decompositions do

new edge = (d, d.utility, d.cost);
add new edge to edge collection;

end
explore q = [];
for edge in edge collection do

add (node collection[0], edge) to explore q;
end
/* search exploration queue */
num explored = 0;
while num explored below exploration bound do

num explored++;
plan, decomp = explore q.get max();
if decomp tasks can be added to plan then

new plan = plan + decomp tasks;
add new plan to node collection;
for edge in edge collection do

if edge.task not in new plan and
new plan.cost + edge.cost below
max cost then

add (new plan, edge) to explore q;
end

end
end

end
/* find best plan in node

collection */
best plan = null;
for plan in node collection do

if plan.utility above best plan.utility then
best plan = plan;

end
end
return best plan;

tasks. This allows us to assign utility and energy cost directly
to each decomposition, because its breakdown into disparate
subtasks has already been performed. Then, each decompo-
sition’s utility is the sum of each of its subtasks’ utility. The
same is true for energy cost. This step is performed once per
domain model, offline. Preprocessing has exponential run-
time in the worst case, and future work may require addi-
tional search in decomposing tasks as well as planning them.

Our search graph consists of nodes containing partial
plans and their associated energy cost and utility. A node’s
cost is simply the sum of the costs of each task in the node’s
partial plan; the same goes for utility, though future work
may take joint utility into account. In the initialization phase,
the algorithm creates a single node containing an empty
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plan, with utility and cost 0. Then, it iterates through all task
decompositions created in the pre-processing phase in order
to generate the set of edges that may be followed from a
given node. To finish the initialization phase, the algorithm
populates an exploration queue with (node, edge) pairs, pair-
ing the singular initial node with all edges in the collection.
At the end of the initialization phase, then, the exploration
queue consists of all task decompositions paired with the
empty plan.

In the exploration phase, the planner pops the top of the
exploration queue to get (P, T ), where P is a partial plan,
and T is the list of primitive subtasks comprising a task de-
composition. It then attempts to schedule all tasks in T given
the state of the world produced by following the plan P . If
the tasks cannot be scheduled, it moves on to the next ex-
ploration queue item. If the tasks can be scheduled, i.e. their
preconditions are met and their impacts do not produce any
conflicts, a new graph node is created. This node contains a
new plan P ′, the resulting plan after adding the tasks in T to
P .

After creating this plan node, the planner iterates through
the edge collection again, pairing the new plan with all pos-
sible tasks. In this iteration, it ignores tasks that have al-
ready been scheduled in the plan, so as to avoid duplicates.
The algorithm also filters these pairs to ensure that the to-
tal cost P.cost + T.cost < M , where M is the max energy
cost allowed (equal to the current battery charge of the lan-
der). This bounds our search, and we further bound the al-
gorithm’s search by limiting the number of exploration can-
didates examined. Note however that this bound maintains
optimality if we allow the algorithm to expand the entire
space. After filtering, these pairs are added to the exploration
queue, and the next queue item is examined. The exploration
queue is a priority queue, with (plan, decomposition) pairs
ordered by a heuristic value to improve search results. Given
a plan, decomposition pair (P, T ), we assign the heuristic
value h(P, T ) = P.utility + T.utility

T.cost . Finally, in the plan
selection phase, the algorithm iterates through all candidate
plan nodes, selecting the plan with the highest utility. Ties
are broken according to energy cost, where a lower energy
cost is preferred.

Empirical Evaluation
To test our model, we ran simulations of our planning and
execution system on three variants of the Europa Lander do-
main described in Figure 1. The first is the base scenario.
Here each task consumes an amount of energy that matches
its a priori expectation in the task network, but may be noisy,
with a standard deviation of 10%. In the second variant,
we bias this noise such that tasks are expected to consume
10% more energy than modeled. Finally, the third variant
biases noise in the opposite direction, such that tasks are ex-
pected to consume 10% less energy. For each variant, we
simulated each of the four planning/execution strategies dis-
cussed in our theoretical framework, and measured the util-
ity achieved. In simulation, the failure probability of each
task is uniform and independent. Each failure resolution
mechanism is assumed to have a fixed cost and always suc-

Figure 3: Average utility achieved in simulation of the base
Europa Lander domain for 4 planning strategies, compared
to theoretical model predictions.

ceed in resolving the issue. The data for each figure shows
the mean utility achieved across 50 simulations of the sce-
nario.

For our model calculations, we estimate our average util-
ity per cost (uavg) by analyzing plans generated by a pre-
scient planner. This planner has perfect execution informa-
tion a priori, so plan execution exactly matches the plan-
ner’s predictions. Task failure probability is assumed to be
0.1, and we assume flexible execution is able to handle
30% of such failures, while replanning is able to handle
an additional 60% of failures. Thus, P (replan) = 0.04 and
P (FE) = .02.

Our model predicts the “static” strategy to perform poorly,
since it has no failure resolution mechanisms and is thus
likely to terminate quickly. By introducing a failure recov-
ery mechanism, our model predicts the “ground” strategy
to improve performance considerably. However, this failure
recovery mechanism is still fairly costly. The “fe” strategy
introduces flexible execution to mitigate this. As such, our
model predicts a higher utility achievement, since some set
of failures are now resolved by a less costly mechanism. Fi-
nally, the “replan” strategy is predicted to perform best of all
the strategies. Like the “fe” strategy, it introduces another
failure resolution mechanism. However, it also introduces
additional utility through plan optimization. When utility is
discovered at execution time, the “replan” strategy is able to
exploit that discovery, where the other strategies are not.

In Figure 3, we compare the predictions of our model to
the measured utility achievement of our system in simula-
tion. We see that the four strategies follow the general con-
tour of our model’s predictions, but vary by some amount.
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Figure 4: Average utility achieved in simulation of the Eu-
ropa Lander domain where all tasks take 10% more energy
than expected, compared to empirical results in the base do-
main.

While our predictive model generally matches our empiri-
cal measurements, it is limited in some aspects. The model
uses uavg as a way to estimate utility achievement based on
power, smoothing performance across the entire execution
into a linear model. However, in the Europa Lander domain,
utility is achieved only during communication events. Be-
cause the model views utility gain as purely linear, it is un-
able to capture the spikes in utility inherent in the domain.

In addition, in the Europa Lander domain, sites only need
to be excavated a single time, and multiple samples can be
taken from a single excavation site. This means that the first
sample taken at a site is much more costly than future sam-
ples. Because of this, if the system tends to run out of energy
while attempting to sample a site for the first time, the model
is likely to overestimate utility gain, since a significant por-
tion of energy is used while no utility is gained. On the other
hand, when the system tends to halt while repeatedly sam-
pling from an existing site, the model underestimates util-
ity. This behavior is prominently seen in the ground and FE
strategies in Figure 3. Both strategies spend a significant por-
tion of their execution repeatedly sampling from an excava-
tion site, leading to higher utility gain than expected during
these portions of the plan execution.

For the replan strategy in particular, we also consider the
effects of utility discovery and plan optimization in replan-
ning. To determine a value for d, the number of times that
utility discovery can be exploited, we calculate and upper
bound for this value based on the total energy available to
the system. However, the system may not be able to take
advantage of utility discovery this number of times, since it

Figure 5: Average utility achieved in simulation of the Eu-
ropa Lander domain where all tasks take 10% less energy
than expected, compared to empirical results in the base do-
main.

may run into too many task failures, or the planner may sim-
ply choose to complete other tasks. Thus, the calculations
for our model tend to overestimate the value of utility dis-
covery in the replanning strategy.

Next, we consider the effects of biased noise on the util-
ity gain of our system. First, we examine the scenario where
all tasks use 10 percent more energy on average than ex-
pected. A comparison of this scenario and the base scenario
is shown in Figure 4. Naively, we might expect utility in each
scenario to decrease by about 10 percent. However, because
utility is achieved in spikes through the completion of fairly
lengthy chains of tasks, events have an impact on utility only
if they increase or decrease the probability of successfully
completing a chain of tasks. In the “more energy” scenario,
the ground strategy appears generally unaffected.

The replan strategy is affected more heavily, since a lower
pool of energy available limits the strategy’s ability to take
advantage of discovered utility. On the other hand, because
it is able to replan, it can make use of lower cost actions
such as Seismograph/Panorama tasks to gain utility despite
lacking the energy to complete a sample.

Finally, we consider the scenario where tasks take 10 per-
cent less energy than expected (Figure 5). Here, the ground
strategy improves considerably in performance, while FE
improves at a lower clip. This is consistent with what we
see in the previous scenario. The ground strategy is able to
benefit significantly from the extra energy and complete an
extra sample cycle, while FE is not as close to this boundary
and thus is not affected as strongly.

The replan strategy also sees significant benefits from ex-
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tra energy. Extra energy enables additional samples, whose
benefit is amplified by the potential for utility discovery. In
addition, the replan strategy is able to integrate knowledge
of the additional energy during execution time as it updates
state predictions with the reality on the ground. Thus, instead
of settling for a Seismograph/Panorama task, as might occur
in the base or high energy use scenarios, the replan strategy
is more often able to process a sample.

Related Work
Decision-theoretic planning is an effective approach to plan-
ning under uncertainty, particularly in robotic domains, as
it provides a formal model for reasoning about problems
in which actions have stochastic outcomes or the agent
has incomplete information about its environment (Iocchi
et al. 2016; Saisubramanian, Zilberstein, and Shenoy 2017;
Zilberstein et al. 2002). The primary objective of decision-
theoretic planning is to produce plans or policies that de-
fine the potential trajectories of actions that the agent may
take which maximizes its expected utility, rather than max-
imizing or guaranteeing goal-reachability (Boutilier, Dean,
and Hanks 1999). A standard approach in decision-theoretic
planning for modeling domains is to use a Markov deci-
sion process (MDP) (Bellman 1957) when the agent knows
the full evaluation of every state at each timestep, or a par-
tially observable Markov decision process (POMDP) (Spaan
2012) where this holds only for a subset of the variables that
define the statespace.

However, several issues in spacecraft or rover operations
complicate the use of said decision making models. First,
these models traditionally do not support durative or concur-
rent actions, but rather assume that all actions are instanta-
neous and fully sequential in nature. Second, although there
have been a number of approaches over the years aimed at
improving the scalability of these approaches (Guestrin et
al. 2003; Wray, Witwicki, and Zilberstein 2017; Yoon, Fern,
and Givan 2007), most algorithms that solve MDPs produce
policies that account for all contingencies and provide ac-
tions for all states in the domain. This is generally imprac-
tical or impossible in spacecraft and rover operations where
computational power is (often severely) limited, and more
so in our problem where the battery is non-rechargeable
and the domain model is expected to be modified repeatedly
throughout the agent’s operation.

Onboard planning and execution are of great interest to
the space domain. Flexible execution of tasks is a central fo-
cus of execution engines like PLEXIL (Verma et al. 2005)
and TRACE (de la Croix and Lim 2020). The Earth Ob-
serving One (EO-1) spacecraft (Chien et al. 2005), which
flew for over 12 years from 2004-2017, was designed specif-
ically to react to dynamic scientific events. Planning was
performed by the CASPER planning software (Chien et al.
2000), which took on the order of 10s of minutes to replan
but did not produce temporally flexible plans. To address
this, the onboard executive (SCL) was able to flexibly in-
terpret the execution of a plan to handle minor execution
runtime variations. The flight and ground planners (Chien et
al. 2010) both used a domain specific search algorithm that

enforced a strict priority model over observations for a lim-
ited model of utility. Recently, the Intelligent Payload Ex-
periment (IPEX) also successfully used the CASPER plan-
ning software to achieve its mission objective, further vali-
dating the efficacy of using onboard replanning to handle dy-
namic events and observations during operation even when
the plans are not temporally flexible (Chien et al. 2017).

The M2020 Perseverance rover also plans to fly an on-
board planner (Rabideau and Benowitz 2017) to reduce lost
productivity from following fixed time conservative plans
(Gaines et al. 2016). Like the planning approach we pro-
pose in this paper, the M2020 planning architecture also re-
lies on rescheduling and flexible execution (Chi et al. 2018),
ground-based compilation (Chi et al. 2019), heuristics (Chi,
Chien, and Agrawal 2020), and very limited handling of
planning contingencies (Agrawal et al. 2019). However, it
uses a non-backtracking planner, which cannot take advan-
tage of plan optimization or utility discovery. Our work also
takes a different focus, primarily examining the effects of
task failure and considering integrated planning in the con-
text of failure resolution. Finally, many characteristics of the
M2020 mission are fundamentally different from the mis-
sion concept we consider here, such as the lack of reliable
a priori model parameters, the inability to recharge the bat-
tery, and the long communications blackout time windows
incentivizing greater mission autonomy.

Future Work
Our work focuses primarily on our planning system’s re-
sponse to adverse events such as task failure. Our exam-
ination of positive exogenous events is limited to analysis
of utility discovery. However, in space exploration domains,
due to conservative parameter assignments, we often find
that tasks finish early or use fewer resources than the margin
allocated to them. Reasoning about these events may pro-
vide a model that more accurately represents the reality of
the Europa Lander domain.

In addition, in this work we focus primarily on energy as
a resource. However, a number of other resources exist, and
the consumption of any of these may be noisy or biased, af-
fecting plan execution. In particular, task execution time has
wide-ranging effects on both task energy use and plan execu-
tion as a whole, especially when deadlines come into play.
These deadlines are especially present in the Europa Lan-
der domain in the form of ground communication windows.
Task execution time and other variables therefore represent
a significant unexplored area of work in this domain.

While we react to uncertainty at execution time, we do
not take this into account when planning. This is apparent in
our system’s behavior in the scenario where tasks take more
energy than expected. A more sophisticated planner would
explicitly integrate probability of such adverse events, max-
imizing expected utility. For example, excavation tasks in-
volve risk; task failure could result in significant energy loss
or damage to the lander. Reasoning about exogenous events
such as these would improve utility achievement by poten-
tially avoiding such risks, or even seeking them out later in
the mission when failure is less impactful.
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